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Phonon hydrodynamics in frequency-domain thermoreflectance experiments
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The hydrodynamic heat transport equation with appropriate boundary conditions and ab initio calculated
coefficients is validated by comparing the corresponding analytical and numerical solutions with frequency-
domain thermoreflectance experimental measurements in silicon. Special attention is devoted to identifying
the resistive effects appearing at the interface between the metal transducer and the silicon substrate. We find
that a Fourier model using frequency-dependent effective thermal conductivity cannot simultaneously explain
the experimental phase shifts and the amplitude of the temperature oscillations, whereas the hydrodynamic
model using intrinsic parameters provides good agreement across a wide temperature range. In addition,
phenomenology appearing at reduced length and time scales in this kind of experiment at different temperatures
is shown. Specifically, we find hydrodynamic modes of thermal transport that are analogous to pressure- and
shear-wave propagation in viscoelastic media.
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I. INTRODUCTION

It is well known that extracting thermal energy from semi-
conductor samples with reduced characteristic sizes is more
difficult than from bulk materials [1–6]. This is indirect evi-
dence that Fourier’s law is not valid at these scales. In previous
works, an effective form of this equation with a reduced
thermal conductivity [3,7–10] or a size-dependent thermal
boundary resistance [4,11,12] has been used to interpret ex-
perimental observations of size effects. A paradigmatic exam-
ple in which this approach has been applied are time-domain
and frequency-domain thermoreflectance (TDTR/FDTR) ex-
periments in which an oscillating laser heats a metal thin
film (the transducer) on top of a semiconductor substrate
and the temperature evolution of the transducer is obtained
by thermoreflectance techniques [2,13–18]. Specifically, these
measurements have been interpreted as a way to measure the
phonon mean free path spectrum and the accumulated thermal
conductivity of the phonon modes in the substrate (because of
the suppression of the modes with mean free paths larger than
the thermal penetration depth).

However, detailed analysis of the temporal and spatial
information provided by these experiments reveals the in-
adequacy of Fourier’s law even in an effective form [2,12–
15,19,20], and brings to light the need for refined transport
equations that are based on parameters that are independent
of the heating frequency and the geometry of the system.
Obtaining and validating new equations able to describe
these experiments opens the door to the development of new
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technological applications aimed at improving the thermal
management of electronic devices.

One of the recent proposals to describe the experimentally
observed phenomena is phonon hydrodynamics [5,21,22].
This model has been used extensively to describe thermal
properties in graphene and other two-dimensional (2D) ma-
terials where normal phonon collisions are dominant [23–25].
The conservation of momentum in such collisions influences
the thermal response of the systems, which can be more
accurately described with the use of the Guyer and Krumhansl
equation (GKE) [26]. The same model equation has also been
used to describe geometry effects in situations where normal
collisions are not dominant [5]. The reason behind this is that
momentum is also conserved at reduced length scales, this
time due to the lack of collisions, and so the same macroscopic
description of the thermal behavior can be employed.

The first direct evidence that Fourier’s law cannot predict
heat transport at the nanoscale was obtained in a recent
work, where it was demonstrated that it could not describe
the temperature profile near a nanoheater line, even using
an effective thermal conductivity [5,21]. In the same work
it was shown that changing to the GKE allows a better
description of the measurements. Here we present further
evidence using FDTR measurements. We show that an inter-
pretation of this experiment in terms of Fourier’s law leads to
contradictory results that are resolved through the use of the
kinetic collective model (KCM) [21,22]. The KCM is based
on a macroscopic generalized heat transport equation with the
form of the GKE with ab initio calculated coefficients and
appropriate boundary conditions. Specifically, we focus on the
available experimental data from FDTR experiments [13,14].
The numerical solution of the transport equations using
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FIG. 1. (a) Phase shift ϕ and (b) normalized temperature oscillation amplitude �T as functions of the heating frequency f at T0 = 311 K.
Curves denote predictions from effective Fourier models based on bulk and fitted values of the substrate thermal conductivity, the latter of
which are shown in panel (c).

finite-element methods (FEMs) allows a direct compari-
son with the experimental measurements. We show that
the KCM properly describes the observed surface tem-
perature phase shift with respect to the laser heating
pulse and also the amplitude of the temperature oscilla-
tions by using ab initio coefficients, i.e., all the equation
parameters are independent of the geometry and heating
frequency.

Furthermore, we derive analytical solutions to the KCM
equations [22] for the case under study and compare with
Fourier (bulk) predictions in order to gain phenomenological
insight and interpretation of the process of heat release from
metal domains to a silicon substrate. In particular, by using
an analogy with the pressure and shear wave propagation in
viscoelastic media, we distinguish 3D hydrodynamic heat
transport mechanisms that cannot be observed in the Fourier
framework.

Finally, we use the model to understand the effects that
a transducer-semiconductor interface thermal boundary
resistance (TBR) has on heat propagation. In contrast to
previous interpretations in terms of the effective Fourier
model [4,13,14], which required ad hoc enhanced TBR, the
present model uses a lower TBR that can be related with
other theoretical models such as the diffuse mismatch model
(DMM) [27] because of the inclusion of complementary
intrinsic resistive effects arising from the non-Fourier heat
dissipation in the substrate.

The article is organized as follows: In the second section,
we motivate the use of generalized heat transport equations
in this type of experiment by considering the nature of the
predictions obtained from an effective Fourier framework.
In the third section, we provide a description of the KCM
including all the required boundary conditions. In the fourth
section, we compare the experimental data with the numerical
and analytical results from the KCM. In the fifth section,
we discuss the applicability of the model to this type of
experiment, and we highlight the new phenomenology in-
troduced by the hydrodynamic model with respect to the
Fourier-based description with the use of the analytical KCM
solutions. Finally, the sixth section is devoted to concluding
remarks.

II. EFFECTIVE FOURIER FRAMEWORK

To motivate the use of a generalized heat transport equa-
tion, it is important to first demonstrate the inability of an
effective Fourier model to reproduce the detailed temporal
information obtained with FDTR experiments [13,14], in
which a silicon substrate is heated with a sinusoidal laser
pulse with frequency f ; the thermal response is measured by
a second laser and compared with the original heating wave.
To achieve this, the substrate is covered by a transducer of
gold (64 nm in height) that absorbs the laser power through
electron excitation and releases it to the substrate. From the
amplitude of the temperature oscillations �T in the transducer
and the phase shift ϕ between the temperature response and
the heating function, information about the TBR between
materials and the thermal transport in the substrate can be
obtained.

The described experiment is very sensitive to the contact
between the metal and the substrate. To reduce this effect, in
[13], the authors include a thin layer of chromium between
the gold and the silicon to reduce the TBR and hence make
the experiment more sensitive to the substrate conduction. In
the original work [13], a Kapitza interface boundary condi-
tion with conductance 210 MW m−1K−1 between an Au/Cr
transducer and the Si substrate is assumed. In this section,
we use the same conductance as well as the other thermal
properties for both domains reported in [13] at 311 K.

In Fig. 1, we show the phase shift ϕ and the temperature
amplitude �T measurements compared with the analytical
results obtained using Fourier’s law in the substrate with
different values of the thermal conductivity. The blue line rep-
resents the results obtained using the bulk value of the thermal
conductivity for the substrate. It can be seen that for very small
frequencies the predictions for both �T and ϕ agree with the
experimental data, but as the frequency increases, both curves
deviate from the data. To fit to the data in the whole range of
frequencies, it seems natural to assume a frequency-dependent
thermal conductivity. To fit to the phase shift, the effective
thermal conductivity must decrease with increasing frequency
of the laser pulse beam, as shown in [13]. However, using
this type of thermal conductivity leads to a poor fit to the
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FIG. 2. Transport equations and interface boundary conditions
used in Fourier and KCM for the heat flux q and the temperature
T . The interface normal vector n points toward the semiconductor.
The substrate heat flux tangential component is denoted by qt , and
subindex � refers to the transducer domain in the boundary condi-
tions. A detailed explanation of KCM can be found in Appendix A,
and the equation parameter values can be found in Appendix C.

temperature amplitude. To reproduce the reduction of the
temperature amplitude �T , the effective thermal conductivity
for the substrate must increase with increasing frequency. In
this case, the fit to the phase-shift curve becomes worse. The
conclusion to this is that the use of a frequency-dependent
effective thermal conductivity cannot simultaneously explain
both experimental observables ϕ,�T at 311 K.

III. KINETIC COLLECTIVE MODEL

For the aforementioned reasons, we now propose an alter-
native model to describe the experiment that makes use of the
hydrodynamic heat transport equation for the Si substrate,

τ q̇ + q = −κSi∇T + �2[∇2q + α∇(∇ · q)], (1)

where κSi is the bulk thermal conductivity, τ is the heat
flux relaxation time, � is the nonlocal length, and α is a
dimensionless parameter. This generalized equation has been
derived from the Boltzmann transport equation in the limit
where normal collisions are dominant (collective regime)
with α = 2 [26], and also when the resistive collisions are
important by assuming an averaged phonon mode relaxation
time with α = 1/3 [28]. Equation (1) captures the effect of
momentum conservation due either to normal collisions, as in
the collective regime, or to the relative absence of resistive
collisions close to the boundaries at length scales smaller than
the average phonon mean free path, even in the kinetic regime
(resistive-dominant collisions). The KCM combines the in-
fluence of normal and resistive collisions through specific
microscopic expressions for κ , �, and τ that interpolate from
the kinetic and collective limits [21,29]. At the mesoscopic
level of description, the nonlocal length � and the relaxation
time τ are intrinsic material properties that determine the
length and time scales where the thermal perturbations are
correlated, respectively.

The complete set of equations used in the KCM is de-
scribed in Fig. 2 for the different domains and the interface.
Comparison with the Fourier model has been included for
illustration. A detailed explanation of the model and the
equation parameters can be found in Appendix A.

FIG. 3. Output obtained from the models using COMSOL MUL-
TIPHYSICS for f = 100 MHz and T0 = 311 K. The top plot shows
the heating energy density function (blue line) and the temperature
evolution of the transducer surface according to bulk Fourier and
KCM, respectively. The right-bottom plot shows the amplitude of
the temperature oscillations along the cross-plane direction.

The hydrodynamic transport equation is only required to
describe substrate conduction as heat is mainly carried by
phonons with a large mean free path. For the transducer this
change is not necessary as in metals heat is mainly carried by
electrons, which have a significantly shorter mean free path.

For consistency with the substrate transport equation, non-
local terms must be included in the interface boundary con-
ditions. In Appendix B we provide a detailed derivation of
the interface boundary condition by imposing energy con-
servation with the use of the corresponding substrate and
transducer nonequilibrium distribution functions. The semi-
conductor phonon distribution function used is consistent
with the transport equation (1) with α = 1/3 as shown in
[28]. Therefore, we use this form of Eq. (1). For the rest of
the parameters included in the equations, we use ab initio
calculated values independent of the geometry and the heating
frequency. For the materials under study, the values are shown
in Table I of Appendix C. The same temperature-dependent
hydrodynamic parameters for silicon have been used in previ-
ous work [22] to predict the effective thermal conductivity of
complex geometries in stationary situations.

Figure 3 displays the KCM and Fourier predictions for
a given heating frequency using COMSOL MULTIPHYSICS. It
shows that the nonlocal term included in the transport equa-
tion modifies the system thermal response with respect to
Fourier. In the next section, we show that KCM captures most
of the phenomena observed in the FDTR experiment.

IV. RESULTS

The system of partial differential equations described in
the previous section can be solved analytically using inte-
gral transforms (see Appendix D for details). Calculating
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FIG. 4. Phase shift ϕ as a function of frequency f at (a) T0 = 416 K, (b) 311 K, (c) 154 K, and (d) 81 K. The KCM and Fourier (bulk κ)
solutions use the thermal conductivity and the thermal boundary resistance R reported in Table I (Appendix C). The Fourier (bulk κ , increased
R) solution uses an enhanced thermal boundary resistance chosen to fit the high-frequency measurements, which leads to a poor fit at low
frequencies. The agreement between the finite elements calculation and the KCM analytical solutions is excellent.

the change in surface temperature �T then amounts to per-
forming numerical integration of the local temperature over
a function with the form of the probe spot. The phase shift
ϕ can then be directly calculated from the argument of �T .
To support this analytical methodology, we also obtained
numerical solutions via the FEM implementation presented in
[22] using COMSOL MULTIPHYSICS.

In Fig. 4, we show the corresponding KCM results for the
phase shift ϕ at different temperatures 416, 311, 154, and
81 K compared with the experimental data [13] and the bulk
Fourier prediction with the same thermal boundary resistance,
R, as in KCM. For illustration, we also show that the bulk
Fourier solutions with an increased TBR fitted to reproduce
high-frequency measurements do not fit the low-frequency
measurements. The normalized temperature oscillation am-
plitude �T is also compared in Fig. 5 at the experimentally
available temperature: 311 K. All quantities correspond to a
weighted average across the surface of the transducer, com-
puted using the Gaussian function of the probe beam as the
weight according to the supplementary material of [14].

From Figs. 4 and 5 it can be observed that by using
frequency-independent coefficients obtained from ab initio
calculations of natural bulk Si, we obtain good agreement
between experiments and the KCM for both ϕ and �T .

In previous work [22], it was shown that non-Fourier
effects emerge in experiments involving small characteristic
lengths comparable to the nonlocal length �. In the present
case, the thermal penetration depth is the limiting length scale
(see Sec. V for more details about the penetration depth).
By increasing the heating frequency, the penetration depth
is reduced and non-Fourier effects become significant. For
illustration, we include in the figures a blue shading indicating
the range of frequencies for which the classical thermal pen-
etration depth LSi = √

DSi/(π f ) is larger than three times the
microscopic characteristic length

√
(1 + α)� (where DSi is the

substrate thermal diffusivity and α = 1/3).
Across the experimentally accessible range of frequencies,

the memory term in the hydrodynamic equation (1) with
coefficient τ and the hydrodynamic corrections in the inter-
face condition (A6) only play important roles at temperatures
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FIG. 5. Normalized temperature amplitude �T as a function of
frequency f at T0 = 311 K.

below 200 K and provide small corrections. The inclusion
of the viscous (nonlocal) term with coefficient �2 in the
heat transport equation is the main cause for the non-Fourier
corrections.

Finally, a comment on the observed discrepancy at high
temperatures and high frequencies f > 100 MHz is in order.
In the present work, the Au/Cr transducer is modeled as a
single domain with homogeneous properties. However, the
presence of an interface between the 5-nm-thick chromium
layer and the rest of the transducer influences the thermal
response of the system at high frequencies, as suggested in
[2]. In Appendix E we discuss the bulk Fourier model and the
KCM considering detailed heat conduction in the transducer.
Specifically, we show that by restricting the energy deposi-
tion to the chromium layer and including a Cr-Au Kapitza
interface thermal resistance, the discrepancy can be resolved
at T0 = 311 K.

V. DISCUSSION

The main effect of the nonlocal term of Eq. (1) is the
modification of the thermal penetration depth. The analytical
solution to the KCM (see Appendix D) sheds light on this
previously unreported mechanism. Specifically, it reveals that
there are two modes of thermal transport, which are analogous
to pressure (P-mode) and shear (S-mode) waves in viscoelas-
tic media. The P-mode captures longitudinal flux waves that
are irrotational (as in the case of Fourier’s law), whereas the
S-mode captures transverse flux waves that are divergence-
free (and thus temperature-conserving). The transverse nature
of the S-modes means they can only be a feature of three-
dimensional heat conduction and would not be observed in
one-dimensional models. Based on the analysis, we can define
the penetration depths of the KCM P-modes and S-modes as
LP = 1/Re{λp(0)} and LS = 1/Re{λs(0)}, respectively, where
λp and λs are defined by (D8) (see Fig. 6). The penetration
depth LS is proportional to the nonlocal length �. At low fre-
quencies ( f � DSi/�

2), the penetration depth LP is equivalent

(a) (b)

FIG. 6. The thermal penetration depths computed from Fourier
and KCM at (a) T0 = 311 K and (b) T0 = 81 K.

to LSi, the classical penetration depth for Si derived from
Fourier’s law. However, at high frequencies ( f � DSi/�

2),
the penetration depth LP becomes proportional to � as well,
with LP/LS → (α + 1)−1/2, indicating that the penetration
depth of both modes can become comparable. The coupling
of both modes at high frequencies causes deviations in the
thermal response of the substrate with respect to the classical
description based on Fourier’s law. A detailed analysis of the
onset of these hydrodynamic heat transport effects depending
on the heating frequency can be found in Appendix F.

The non-Fourier behavior predicted by KCM provides a
description of the experimental data with a fixed set of param-
eters at different temperatures. In contrast, the Fourier-based
description requires an enhanced thermal boundary resistance
R in order to fit the high-frequency measurements of the phase
shift, which leads to a poor fit at low frequencies, as can
be seen in Fig. 4. In addition, the improved performance of
the KCM allows for better modeling of the semiconductor-
transducer TBR. In previous works using Fourier’s law, a
TBR that is dependent on the size of the contact has been
used to interpret similar experimental results [4]. However,
the resistance R is an intrinsic property determined only
by the mismatch between the contact materials and the quality
of the contact.

Assuming no defects in the contact area of the interface
and diffusive phonon reflections, a lower bound for the ther-
mal boundary resistance R in the interface condition (A6)
is Rmin = (γ −1

0 + γ −1
0�

)/2, with γ0 and γ0�
depending only

on the specific heat and group velocities of the phonon
modes (a derivation of this lower bound using the hydrody-
namic nonequilibrium distribution function can be seen in
Appendix B). This thermal resistance arises from the phonon
distribution function mismatch between chromium and sili-
con, and is in agreement with the diffuse mismatch model
(DMM) [27]. Current fabrication processes do not allow
perfect contact and hence the thermal resistance is larger than
this lower bound. This is because the metal is sputtered on
top of the substrate, which implies that the interface is not
purely crystalline. We cannot quantitatively predict the value
of R because of the lack of knowledge of the interface defects.
However, it is natural to expect that the correction due to inter-
face imperfections is temperature-independent. Consequently,
we fitted a temperature-independent scaling factor with re-
spect to the lower bound R/Rmin = 2.71 in order to reproduce
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the experimental measurements at low frequencies (which do
not depend on hydrodynamic effects, i.e., the bulk Fourier
and the KCM predictions coincide, as can be seen in Fig. 4).
The rest of the terms in (A6) are higher-order corrections
derived from the nonequilibrium phonon distribution function
describing the substrate close to the interface, as shown in
Appendix B. These terms cause only small corrections in the
present results.

VI. CONCLUDING REMARKS

We have detailed a multiscale hydrodynamic heat transport
model that is able to predict FDTR experimental measure-
ments using ab initio calculated parameters. In contrast to
previous interpretations based on an effective Fourier frame-
work [13], by capturing the nonequilibrium effects induced
by the interface and the nonhomogeneous heating, the model
is able to reproduce both the amplitude of the temperature
oscillations and the phase shift with the same set of geometry-
and frequency-independent coefficients. The analytical solu-
tions to the KCM for the situation under study have been
used to discuss the phenomenological interpretation of the
hydrodynamic model by comparison with the Fourier bulk
prediction. According to the KCM, the onset of non-Fourier-
transport mechanisms that modify the penetration depth at
high frequencies is the natural way to explain the experimental
data, which cannot be fully described as an effective reduction
of the thermal conductivity.

Special attention has been devoted to explaining the re-
quired boundary conditions. In particular, we have shown
that the interface temperature-jump condition is obtained by
imposing microscopic energy balance restrictions with use of
the specific nonequilibrium distribution function accounting
for nonlocal effects. The results show that by using values
of the thermal boundary resistance proportional to the lower
bound predicted by the DMM, the KCM is able to give
remarkable predictions. In contrast, the Fourier-based models
require large values of the thermal boundary resistance to fit
the measurements at high frequencies, which do not fit the
low-frequency range measurements [13].

The model was previously presented in [22] for stationary
situations to calculate the effective thermal conductivity of
silicon samples with an arbitrary geometry. Here we extended
its use to transient situations including metal-semiconductor
interfaces. Therefore, in this work we have shown how to
integrate the hydrodynamic description of the substrate heat
transport in the presence of contact metal domains. We have
also found excellent agreement between the analytical KCM
solutions and the numerical solutions obtained using the FEM
implementation presented in [22].
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APPENDIX A: DESCRIPTION OF THE MODEL

In this Appendix, we provide a full description of the
KCM transport equations and boundary conditions required to
predict the temperature T and the heat flux q in the transducer
(denoted by subindex �) and in the semiconductor.

1. Transport equations

Heat conduction in the transducer layer (mainly composed
of gold with thickness h = 64 nm) is described using conser-
vation of energy along with Fourier’s law,

c�Ṫ� + ∇ · q� = Q, (A1a)

q� + κ�∇T� = 0, (A1b)

where the dot denotes differentiation with respect to time,
c� is the transducer specific heat, κ� is the transducer bulk
thermal conductivity, and

Q = Q0 sin(2π f t ) exp

(−2r2

r2
s

)
(A2)

is the imposed heating energy density with Q0 = 1 W m−3,
rs = 3.2 μm, r is the radial coordinate, and f is the heating
frequency of the laser pulse beam. Thermal transport in the
substrate is modeled using conservation of energy and the
hydrodynamic equation,

cSiṪ + ∇ · q = 0, (A3a)

τ q̇ + q + κSi∇T = �2[∇2q + α∇(∇ · q)], (A3b)

where cSi is the substrate specific heat, κSi is the substrate
bulk thermal conductivity, � is the nonlocal length, τ is the
heat flux relaxation time, and α is a dimensionless parameter.
The microscopic expressions of these parameters for Si can be
found elsewhere [21,29].

2. Boundary conditions

At the transducer free surface (x = −h) insulation is im-
posed,

q� · n = 0, (A4)

where n is the boundary normal vector. The temperature of
the substrate base is fixed to the initial temperature T0.

As indicated in [14], a 5 nm adhesion layer of chromium
is introduced in the transducer base between the gold and the
semiconductor to enhance the interface thermal conductance.
We impose three conditions at the metal-silicon interface (x =
0): The first is continuity of the normal component of the heat
flux:

q� · n = q · n. (A5)

The second is a temperature-jump boundary condition that
accounts for the phonon population mismatch between the
metal and the semiconductor along with the nonequilibrium
effects introduced by the interface,

T − T� = −R q · n + γ −1(β∇ · q − χ : ∇q), (A6)
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where n points toward the semiconductor and γ , β, χ are ab
initio coefficients. The tensor χ is diagonal. The TBR value
R coincides with the DMM prediction with a temperature-
independent correction to account for the sample interface
defects as mentioned in Sec. V. The derivation of this bound-
ary condition with the use of the specific nonequilibrium
distribution function consistent with (A3b) (assuming diffu-
sive reflections at the interface) and the explicit microscopic
expressions for these parameters can be found in Appendix B.
The last two terms give only small corrections.

Finally, a slip boundary condition for the tangential com-
ponents of the substrate heat flux qt is required:

qt = C�∇qt · n. (A7)

The slip coefficient C = 1+p
1−p depends on the fraction of spec-

ularly reflected phonons p, which can be calculated using
the wavelength of the phonon modes, the specific heats, and
the roughness of the boundaries as discussed in [22]. In the
present case, diffusive boundary reflections are expected, so
that p = 0 and C = 1.

The values for all the parameters can be found in Table I of
Appendix C.

APPENDIX B: INTERFACE BOUNDARY CONDITIONS

In [28], the derivation of the transport equation (A3b)
for a semiconductor was carried out in the kinetic regime
with an averaged phonon relaxation time using a perturbation
expansion of the BTE around the nonequilibrium distribution
obtained by the maximum entropy principle. The correspond-
ing nonequilibrium distribution function f reads

f = f eq + 3

cv2
g

∂ f eq

∂T
qivgi + τR

c

∂qi

∂xi

∂ f eq

∂T

− 3τR

cv2
g

vgivgj
∂qi

∂x j

∂ f eq

∂T
, (B1)

where f eq is the equilibrium distribution function, vg is the
phonon group velocity, c is the specific heat, and τR is an
averaged relaxation time.

Here we assume that this nonequilibrium distribution func-
tion can be used to derive the appropriate boundary conditions
at the interface using energy balance restrictions. Consider the
interface normal vector n pointing toward the semiconductor.
The balance equation for the energy flux at the interface
implies that

qx =
∫

�

f h̄wvgxdk =
∫

�−
f −h̄wvgxdk +

∫
�+

f +h̄wvgxdk,

(B2)

where k is the phonon wave vector, � denotes the whole
wave-vector space, and �− and �+ are the hemispherical
wave-vector space satisfying k · n < 0 and k · n > 0, respec-
tively. The normal direction is denoted by the index x.

The distribution function of the incident phonons toward
the interface from the semiconductor f − follows the nonequi-
librium distribution function f . Moreover, the distribution
function of reflected phonons f + is composed by the spec-
ularly reflected ones following f and the diffusively reflected

phonons, which are in equilibrium at some contact tempera-
ture TC . Accordingly,

f − = f , (B3a)

f +(vgx ) = p f −(−vgx ) + (1 − p) f eq(TC ), (B3b)

where p is the fraction of specularly reflected phonons (al-
ready introduced in [22]) and TC is an instrumental parameter
to define the equilibrium situation of the diffusively reflected
phonons in the interface going toward the semiconductor.

In the metal region, we assume Fourier heat transport. The
corresponding nonequilibrium distribution function f� reads

f� = f eq + 3

c�
(
v�

g

)2

∂ f eq

∂T
qiv

�
gi. (B4)

Again, we impose an energy balance at the interface:

qx =
∫

�

f� h̄wvgxdk =
∫

�+
f −
� h̄wvgxdk +

∫
�−

f +
� h̄wvgxdk,

(B5)

where f −
� and f +

� are the incident and outgoing phonon
distribution functions satisfying conditions (B3a) and (B3b),
respectively. Notice that TC is also used to define the equilib-
rium distribution of the diffusively reflected phonons going
toward the metal.

Assuming p = 0 (diffusive reflections) and by using the
nonequilibrium distribution functions (B1) and (B4) in the
balance equations (B2) and (B5) with identifying TC we obtain
the boundary condition,

T − T� = (
γ −1

0 + γ −1
0�

)
(−q · n + ε · q)

+ γ −1
0 (β∇ · q − ∇q : χ ), (B6)

where the ab initio calculated coefficients read for i = x, y, z

γ0 = vg

4
c, (B7a)

γ0�
= v�

g

4
c�, (B7b)

εi =
∫

�−
h̄wvk

gx

3

ck
(
vk

g

)2

∂ f eq

∂T
vk

gidk = 1

2
δix, (B7c)

β =
∫

�−
h̄wvk

gx

τ k
R

ck

∂ f eq

∂T
dk, (B7d)

χi j =
∫

�−
h̄wvk

gx

3τ k
R

ck
(
vk

g

)2

∂ f eq

∂T
vk

giv
k
gjdk. (B7e)

By introducing the coefficients in (B6), we obtain the
boundary condition

T − T� = − 1
2

(
γ −1

0 + γ −1
0�

)
q · n + γ −1

0 (β∇ · q − ∇q : χ ).
(B8)

The coefficient (γ −1
0 + γ −1

0�
)/2 is the thermal boundary

resistance for perfect contact (i.e., all of the top surface of
the substrate is covered with chromium) assuming diffusive
reflections. Therefore, it can be considered as a lower bound
for the thermal resistance. To obtain an adequate boundary
condition with a nonperfect contact area (A6), we adjust the
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TABLE I. Temperature-dependent parameter values.

81 K 154 K 311 K 416 K

c� (KJ m−3K−1) 2470 2470 2470 2470
κ� (W m−1K−1) 110 110 110 110
cSi (KJ m−3K−1) 466 1061 1692 1840
κSi (W m1K−1) 1260 315 150 109
τ (ps) 1002 148 42 27
� (nm) 3127 1047 185 142
γ0 (MW m−2K−1) 359 732 1068 1145
γ0�

(MW m−2K−1) 975 1801 2237 2313
β (nm) −745 −87 −21 −14
χxx (nm) −1066 −129 −31 −21
χzz (nm) −586 −66 −16 −11
1/R (MW m−2K−1) 194 384 534 565

coefficient multiplying the normal heat flux, which we denote
by R. The R value (reported in Table I) is 2.71 times larger than
the lower bound at each temperature. Consistently, the same
correction is also applied to the resistance weighting the non-
local term γ −1 = 2.71γ −1

0 . The actual contact area at the
interface is unknown. Hence, we are not able to quantitatively
validate this correction to account for a nonperfect contact
area.

Finally, the slip boundary condition (A7) for the tangential
heat flux at the interface can be derived in an analogous way
(this is also shown in [28]).

APPENDIX C: PARAMETER VALUES

All the temperature-dependent parameters that appear in
the transport equations and boundary conditions can be found
in Table I. The tensor χ is diagonal with χyy = χzz, where x is
the interface normal direction pointing toward the substrate.
To obtain the microscopic expression for γ0, γ0�

, β, χ we
assumed the nonequilibrium distribution function (B1), which
is consistent with the transport equation (A3b) with α = 1/3
as shown in [28]. For consistency, here we use this form of
Eq. (A3b).

As reported in [14], the transducer has a thickness of h =
64 nm. The thickness of the Si substrate is 525 μm, which we
take as infinite when deriving analytic solutions to the model.

APPENDIX D: KCM ANALYTICAL SOLUTIONS

1. Solution to the full model

The KCM presented in Sec. III and Appendix A can be
solved in terms of Hankel transforms by first writing the heat-
ing energy density (A2) as Q = Q0I (r)e−iωt , where I (r) =
exp(−2r2/r2

s ) is the dimensionless profile of the Gaussian
beam and ω = 2π f is the angular frequency of the laser.
The temperature T� and normal component of the flux q�,x ≡
q� · n in the transducer can be written as

T� =
∫ ∞

0
T̃� (x; k)Ĩ (k)e−iωt J0(kr)k dk, (D1a)

q�,x =
∫ ∞

0
q̃�,x (x; k)Ĩ (k)e−iωt J0(kr)k dk, (D1b)

where Ĩ is the Hankel transform of I ,

T̃� = −B cosh [λ� (x + h)]

κ�λ� sinh(λ�h)
+ Q0

κ�λ2
�

, (D2a)

q̃�,x = B sinh[λ� (x + h)]

sinh(λ�h)
, (D2b)

and λ� = (k2 − i�−2
� )1/2, with �� = [κ�/(c�ω)]1/2 repre-

senting a thermal penetration depth for the transducer (note
that L� = 21/2�� is the classical penetration depth). The con-
stant B is determined through the jump condition for the
temperature (A6), which requires the solution to the substrate
problem.

The hydrodynamic model for heat conduction in the sub-
strate is solved by eliminating the temperature from (A3b) to
obtain

τ q̈ + q̇ = DSi∇(∇ · q) + �2[∇2q̇ + α∇(∇ · q̇)], (D3)

where DSi = κSi/cSi is the bulk thermal diffusivity of the
substrate. Using a Helmholtz decomposition of the flux, q =
∇� + ∇ × A, the hydrodynamic transport equation reduces
to a system of equations for the scalar potential � and the
vector potential A:

τ�̈ + �̇ = DSi∇2� + �2(α + 1)∇2�̇, (D4a)

τ Ȧ + A = �2∇2A, (D4b)

∇ · A = 0. (D4c)

In the case of Fourier conduction, the scalar potential �

is equivalent to the temperature T and the two are related
by � = −κSiT . However, in this context, thermal transport
is analogous to viscoelastic wave propagation; note that (D3)
is mathematically identical to the equations of motion for a
Kelvin-Voigt viscoelastic material with linear damping. The
scalar and vector potentials may therefore be interpreted as
the amplitude of viscoelastic pressure and shear waves, re-
spectively. The Helmholtz decomposition of the flux implies
that the vector potential cannot affect the bulk temperature,
hence the thermal shear waves are temperature-conserving.
By introducing a streamfunction ψ , the problem for the vector
potential can be simplified by writing A = ∇ × (ψn). The
incompressibility condition (D4c) is automatically satisfied,
and the problem for ψ becomes

∇2(τ ψ̇ + ψ − �2∇2ψ ) = 0. (D5)

The scalar potential and streamfunction are then given by

� =
∫ ∞

0
�̃(k)Ĩ (k)e−λp(k)x−iωt J0(kr)k dk, (D6a)

ψ =
∫ ∞

0
ψ̃ (k)Ĩ (k)e−λs (k)x−iωt J0(kr)k dk, (D6b)

where

�̃ =
[

λs(1 + C�λs)

k2(1 + C�λp) − λsλp(1 + C�λs)

]
B, (D7a)

ψ̃ =
[

1 + C�λp

k2(1 + C�λp) − λsλp(1 + C�λs)

]
B, (D7b)
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and the nonclassical inverse thermal penetration depths satisfy

λ2
p = k2 − i(1 − iωτ )

�2
Si[1 − i(α + 1)(�/�Si)2]

, (D8a)

λ2
s = k2 + �−2(1 − iωτ ), (D8b)

with �Si = (DSi/ω)1/2 and Re{λp} > 0 and Re{λs} > 0. From
the conservation of energy (A3a), the substrate temperature is
found to be

T =
∫ ∞

0
T̃ (k)Ĩ (k)e−λp(k)x−iωt J0(kr)k dk, (D9)

where T̃ is related to �̃ through the expression

T̃ = i

cSiω

(
k2 − λ2

p

)
�̃. (D10)

By taking the Hankel transform of the jump condition (A6)
and using the fact that χ is a diagonal tensor with χyy = χzz,
we find that

T̃ − T̃� = −RB + γ −1(χxx − χzz )λsk
2ψ̃

+ γ −1
[
(β − χxx )λ2

p + (β + χzz )k2
]
�̃, (D11)

which holds at x = 0. Substitution of (D2a), (D10), and (D7)
into (D11) results in a linear equation for the constant B.

Having solved the governing equations, the change in
(complex) surface temperature measured by a probe beam
with the same radius as the pump beam can be calculated as
[30]

�T = r2
s

4

∫ ∞

0
T̃� (−h; k)e−r2

s k2/4k dk. (D12)

The phase shift ϕ is given by ϕ = −arg{�T }. The analytical
solutions for the KCM shown in Figs. 4–9 are obtained by
performing numerical integration of (D12).

2. Reduction to an effective Fourier model

The solution in the case of three-dimensional bulk Fourier
transport in both the transducer and substrate can be obtained
in the limit ωτ � 1 and �/�Si � 1, in which case λp 	
(k2 − i�−2

Si )1/2, λs 	 (k2 + �−2)1/2, �̃ 	 −B/λp, ψ̃ 	 0, and
T̃ 	 B/(κSiλp). The constant B can then be determined from
a simplified form of the condition (D11) given by T̃ − T̃� =
−RB at x = 0. This form is consistent with neglecting hy-
drodynamic contributions to the nonequilibrium distribution
function (B1) used to derive (B8), i.e., taking τR → 0 then
leads to β → 0 and χ → 0.

The Fourier model that is obtained from this reduction is
similar to the analytical Fourier solution derived by Cahill
[30]. However, Cahill captures the laser heating through
a boundary condition (identical to that in Appendix D 4),
whereas we capture the heating through a source term in
the bulk equation (A1a) because the laser optical penetration
length in the transducer is much larger than its height h.
At small frequencies, the difference between surface and
volumetric heating is indistinguishable because the generated
heat is rapidly transported across the transducer, and the
two solutions are in good agreement. Minor differences in
the solutions appear at large frequencies. Consistently, if the
transducer thickness h is decreased, the temperature evolution

in the transducer become faster and the two solutions converge
across all frequencies.

3. Reduction to a one-dimensional model

Heat conduction becomes one-dimensional in the high-
frequency limit given by ω � D�/r2

s . However, it is insight-
ful to examine the one-dimensional model outside of the
high-frequency limit because closed-form expressions for the
temperature amplitude and phase shift can be obtained. Upon
invoking the assumption of one-dimensional heat flow, the
surface temperature amplitude is given by

�T (1D) = iQ0

2ωc�

(1 − ζ−1), (D13)

where

ζ =
{

(c�κ�ω)1/2

i1/2

[
R +

(
β − χxx

i1/2γ�Si

)
N

]
+

(
c�

cSi

��

�Si

)
N

}

× sinh

(
h

i1/2��

)
+ cosh

(
h

i1/2��

)
. (D14)

The frequency-dependent function N captures non-Fourier
effects due to bulk hydrodynamic thermal transport and is
defined by

N =
[

1 − iωτ

1 − i(α + 1)(�/�Si)2

]1/2

. (D15)

The one-dimensional effective Fourier model can therefore be
obtained from (D14) by setting N = 1 and β = χxx = 0 (see
Appendix D 2). In the thin-film limit h/�� � 1, Eq. (D14)
simplifies to

ζ = 1 + i−1/2

(
c�

cSi

h

�Si

)
N

− c�ωh

[
iR + i1/2

(
β − χxx

γ�Si

)
N

]
. (D16)

To interpret the one-dimensional solutions for the phase
shift shown in Fig. 8, it is useful to consider a further limit
whereby h/�Si � 1, c�ωh/γ � 1, and (β − χxx )/�Si � 1.
These inequalities are true for frequencies on the order of
10 MHz at both 81 and 311 K. Since ζ is close to unity in this
limit, the expression for the surface temperature amplitude
reduces to

�T (1D) =
(

i

κSicSiω

)1/2 Q0hN
2

+ Q0hR

2
. (D17)

Equation (D17) reveals that for Fourier conduction (N = 1)
and small thermal boundary resistance (R → 0), the phase
shift is a constant across all frequencies, ϕ = −π/4. For
finite values of R, the role of thermal boundary resistance is
to increase the phase shift and bring it closer to zero. The
good agreement between the one-dimensional Fourier and
hydrodynamic models shown in Fig. 8 for frequencies less
than 1 MHz means that hydrodynamic transport is not relevant
here. Thus, the increase in phase shift above −45◦ must be due
to thermal boundary resistance.
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FIG. 7. Phase shift ϕ at T0 = 311 K as predicted from hydrody-
namic and Fourier models that consider the complex heat conduction
in the Au/Cr transducer (purple line). The blue line corresponds to a
numerical solution of the hydrodynamic model in which the Au/Cr
transducer is modeled as a single homogeneous layer as in Fig. 4(b).

4. A single-layer model for substrate conduction

To isolate the role of hydrodynamic conduction in the
experiments, we consider a simplified model consisting of a
single layer of silicon, thereby removing the transducer and
neglecting any effects due to thermal boundary resistance.
The pump laser is assumed to impart a thermal flux of
the form q · n = q0I (r)e−iωt at the surface of the Si layer,
which is located at x = 0. The governing equations consist
of (A3)–(A7); however, the temperature jump condition (A6)
is replaced with the surface-flux condition. The model can be
analyzed in the same manner as before. The solutions for the
substrate temperature and flux, in terms of the scalar potential
and streamfunction, are the same and given by (D7)–(D10).
However, the constant B that appears in these solutions is now
given by B = q0. As a result, the expression for the measured

(a) (b)

FIG. 8. The phase shift ϕ computed from one- and three-
dimensional Fourier-based and KCM models at (a) T0 = 311 K and
(b) T0 = 81 K.

surface temperature simplifies to

�T = −
(

r2
s

4κSi

)
N 2

∫ ∞

0
�̃(k)e−r2

s k2/4k dk. (D18)

The high-frequency, one-dimensional limit of (D18) is
given by

�T (1D) =
(

i

κSicSiω

)1/2 q0N
2

, (D19)

which coincides with the first term of the thin-film limit of
the two-layer model (D17) once q0 is identified with Q0h. The
corresponding phase shift is given by

ϕ(1D) = −π

4
− 1

2
arctan

(
(α + 1)�2

�2
Si

)
+ 1

2
arctan(ωτ ).

(D20)

Thus, nonlocal effects will decrease the phase shift below the
Fourier prediction of −π/4, whereas resistive effects increase
the phase shift toward zero. Interestingly, the nonclassical
contributions cancel out at high frequencies, recovering the
Fourier result.

APPENDIX E: INFLUENCE OF COMPLEX HEAT
TRANSPORT IN THE METAL TRANSDUCER

As shown in Sec. IV, most of the FDTR measurements
from [14] can be explained assuming an homogeneous trans-
ducer and refined transport equations for the substrate heat
conduction. However, some discrepancy is observed at very
high frequencies, f > 100 MHz, for T0 = 311 and 416 K.
This can be explained by assuming that the energy deposi-
tion by the laser is restricted to the 5-nm-thick chromium
layer due to the very weak electron-phonon coupling in Au
as suggested in [2]. In addition, an extra Kapitza interface
thermal resistance between the chromium layer and the rest
of the transducer is expected. In Fig. 7 we show the results
using the corresponding COMSOL simulation assuming Fourier
and hydrodynamic heat transport in the substrate, respectively.
The thermal conductance value used for the Au-Cr interface
is 2 GW m−1K−1, which is in reasonable agreement with
previous work [2]. Therefore, complex heat transport in the
transducer is a possible explanation for the extremely large
phase shift measured at f > 100 MHz.

This refinement is only relevant at very high frequencies
and hence does not significantly modify the phase-shift pre-
dictions at the experimentally accessible range of frequencies
at low temperatures. Furthermore, it only causes minor correc-
tions to the obtained amplitude of the temperature oscillations.
In particular, the result presented in Sec. II is qualitatively the
same.

APPENDIX F: ANALYSIS OF THE ONSET OF
HYDRODYNAMIC HEAT TRANSPORT MECHANISMS

In this Appendix, we compare the phase shift obtained
from one- and three-dimensional models based on Fourier’s
law and the hydrodynamic transport equation. In the Fourier
models (also included in Figs. 4 and 5), the interface condition
(A6) is replaced by the standard Kapitza boundary condition
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(a) (b)

FIG. 9. Comparison of single-layer (substrate only) models with
the full KCM model (substrate and transducer) for (a) T0 = 311 K
and (b) T0 = 81 K.

T − T� = −R q · n. The simplified form of the temperature-
jump condition ensures that nonequilibrium hydrodynamic
effects are consistently neglected in the Fourier model (see
Appendix D 2).

The results of the comparisons when T0 = 311 K are
shown in Fig. 8(a). Heat conduction is strongly three-
dimensional until frequencies on the order of 100 MHz are
reached. In principle, both modes of thermal transport can be
active when heat conduction is three-dimensional; however,
the good agreement between the KCM and Fourier models
for frequencies up to 5 MHz indicates that nonclassical trans-
port mechanisms in the bulk do not play an important role
in this regime. At 5 MHz, the KCM and Fourier models
begin to diverge, highlighting the onset of hydrodynamic
conduction mechanisms, which in this case are dominated by
nonlocal effects. This is deduced from the relatively constant
value of the penetration depth of the KCM S-modes (see
Fig. 6), which implies that ωτ � 1 and thus hydrodynamic
resistive effects are negligible across all frequencies, and the
divergence of the P-mode penetration depth from the Fourier

estimate. Due to the small penetration depth of the S-modes,
these modes are highly localized and do not propagate into
the bulk. Therefore, the three-dimensional conduction that
occurs within the bulk in the frequency band 5–100 MHz
is dominated by KCM P-modes. From 100 MHz onward,
heat conduction becomes one-dimensional. To summarize,
there are three main conduction regimes when T0 = 311 K:
(i) three-dimensional Fourier transport, (ii) three-dimensional
hydrodynamic transport (dominated by nonlocal effects and
interface resistance), and (iii) one-dimensional hydrodynamic
transport (also dominated by nonlocal effects and interface
resistance).

At a lower temperature of T0 = 81 K, additional conduc-
tion mechanisms become relevant, as shown in Fig. 8(b).
Nonlocal effects become particularly strong as the frequency
is increased beyond 10 MHz, as can be seen from the marked
departure of the P-mode penetration depth LP from the classi-
cal penetration depth �Si. As the frequency increases beyond
50 MHz, the penetration depths of the P- and S-modes become
comparable, and resistive hydrodynamic effects are activated
(as seen from the variation in LS with frequency).

To further investigate the role of thermal boundary resis-
tance, in Fig. 9 we compare solutions to the single-layer model
considering both hydrodynamic and Fourier conduction. At
311 K, the monotonic decrease of the phase shift computed
from the one-dimensional model implies that resistive effects
are negligible. The good agreement between the single-layer
and full KCM solutions at small frequencies reflects the rel-
atively small influence of thermal boundary resistance in this
regime. For a lower temperature of 81 K, the large disparity
between the single-layer and full KCM solution suggests that
interface resistance plays an especially strong role at this
temperature. The one-dimensional solution for the phase shift
indicates that hydrodynamic conduction is first dominated by
nonlocal effects, and then resistive effects become equally
important.
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