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a b s t r a c t 

Drug-loaded hydrogels provide a means to deliver pharmaceutical agents to specific sites 

within the body at a controlled rate. The aim of this paper is to understand how con- 

trolled drug release can be achieved by tuning the initial distribution of drug molecules 

in a hydrogel. A mathematical model is presented for a spherical drug-loaded hydrogel. 

The model captures the nonlinear elasticity of the polymer network and thermodynamics 

of swelling. By assuming that the drug molecules are dilute, the equations for hydrogel 

swelling and drug transport partially decouple. A fast optimisation method is developed 

to accurately compute the optimal initial drug concentration by minimising the error be- 

tween the numerical drug-release profile and a target profile. By taking the target drug 

efflux to be piecewise constant, the optimal initial configuration consists of a central drug- 

loaded core with isolated drug packets near the free boundary of the hydrogel. The op- 

timal initial drug concentration is highly effective at mitigating the burst effect, where a 

large amount of drug is rapidly released into the environment. The hydrogel stiffness can 

be used to further tune the rate of drug release. Although stiffer gels lead to less swelling 

and hence reduce the drug diffusivity, the drug-release kinetics are faster than for soft gels 

due to the decreased distance that drug molecules must travel to reach the free surface. 

© 2022 The Authors. Published by Elsevier Inc. 

This is an open access article under the CC BY license 
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1. Introduction 

A hydrogel is a two-component system consisting of a deformable polymer network that is saturated with water. The 

hydrophilic nature of the polymers creates an energetic incentive for water molecules to enter the network via diffusion. 

In order for the network to accommodate the volume of the water molecules, the polymers must stretch. Imbibition of 

water therefore continues until the energy cost of elastically deforming the polymer network balances the energy gain 

of mixing water and polymer. At equilibrium, the volume of a swollen hydrogel can be tens or even thousands of times

greater than the volume of the dry polymer network. The ability to precisely control the degree of swelling via stimuli such

as temperature, pH, and electric fields has led to hydrogels finding use in a diverse range of applications [1] . 

Drug-loaded hydrogels have emerged as important systems for the controlled and targetted delivery of pharmaceutical 

agents [2,3] . Controlled delivery means that drug molecules are released at a prescribed rate; targetted delivery means that 

the drug molecules are released at specific locations within the body. The ability to tune the water content and stiffness of
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hydrogels leads to excellent biocompatibility as they are able to mimic a wide range of biological tissues [4] . In addition,

the polymer network provides mechanical and chemical shielding that prevents the degradation of drug molecules before 

they are released into the body. 

Hydrogels provide a pathway to controlled and targetted drug delivery through their tunable, multi-scale architecture 

and ability to swell when subjected to a stimulus [5] . Hydrogels possess a macroscopic length scale associated with their

overall size, which can range from microns to millimetres, and a nanometric length scale associated with the mesh size of

the polymer network. Both length scales play key roles in the kinetics of drug release: the gel size controls the distance

that drug molecules must travel to reach the gel surface and be released into the environment, whereas the mesh size

controls the rate of drug diffusion through the polymer network. If the mesh size is much greater than the hydrodynamic

radius of a drug molecule, then drug diffusion is uninhibited by the presence of the polymer network. However, as the

mesh size approaches the hydrodynamic radius, drug molecules become increasingly immobilised by the polymer network. 

Drug molecules that are larger than the mesh size are effectively entrapped by the network and diffusion is completely 

suppressed. Hydrogel swelling increases the mesh size of the network, thus mobilising drug molecules and initiating their 

release into the surroundings. By programming a hydrogel to swell in response to specific environmental cues, it is possible 

to deliver drug payloads to target sites within the body. For example, environmentally responsive hydrogels have been used 

to target tumours [6] and breast cancer cells [7] by exploiting local increases in pH and temperature relative to healthy

tissue. 

Due to the increasingly widespread use of hydrogel-based drug-delivery systems, there is a need for broadly applicable 

methods that can sensitively control drug-release profiles [8] . Although the various length scales in a hydrogel can be har-

nessed to alter the drug-release kinetics, achieving a desired drug-release profile remains a major challenge. The onset of 

swelling can drastically change the time scale of drug diffusion by simultaneously increasing the drug diffusivity and the 

distance that drug molecules must travel to reach the free surface. Moreover, a common problem with drug-delivery sys- 

tems is the so-called “burst effect”, where a significant proportion of the drug is released in a short initial time frame [9] ,

a phenomenon that can have potentially dangerous effects [10] . While many advances in tunable release kinetics have been

made in recent years [11] , there is still significant scope for improvement. 

The objective of this work is to employ mathematical modelling to explore the potential of tuning the drug-release pro- 

file by varying the initial drug concentration in drug-loaded hydrogels. The mathematical model will utilise the theory of 

nonlinear elasticity to capture the large deformations of the polymer network that occur during swelling and the result- 

ing elastic stresses. The generation of mechanical stress is a particularly important feature to resolve as it enhances the 

transport of water molecules through the hydrogel via stress-assisted diffusion. An optimisation theory will be developed 

for computing the initial distribution of drug molecules that leads to the best approximation of a target drug-release pro- 

file. The immobility of the drug when the hydrogel is unswollen means that a non-uniform initial concentration can be 

experimentally achieved in a variety of ways [12] and thus has significant relevance as a control method. 

Extensive research on the mathematical modelling of drug-delivery systems has led to a plethora of literature which 

has been reviewed by Siepmann and Siepmann [13] and Siepmann and Peppas [14] . Caccavo [15] compiled a compre-

hensive overview of models that have been specifically developed for hydrogel-based drug-delivery systems; these include 

simple empirical expressions for data fitting, detailed physical models based on continuum mechanics, and statistical and 

neural-network models. The idea to control the drug-release kinetics via the initial drug concentration was first proposed by 

Lee [16] . Subsequent developments by Lu et al. [17,18] involved calculating the optimal initial concentration profile, with the 

drug concentration modelled by the constant-coefficient diffusion equation. Georgiadis and Kostoglou [19] further extended 

these works to consider the case of a spatially non-uniform diffusion coefficient as well as allowing this diffusion coefficient 

to be a free variable. However, the models used in these optimisation approaches did not account for the time-dependent 

swelling of the hydrogel and its subsequent mechanical response. 

The key novelty of this paper therefore arises from combining optimisation theory with the use of a fully coupled chemo-

mechanical model of a hydrogel based on nonlinear elasticity. Our results reveal that a piecewise-linear drug-release profile 

is best approximated if the initial drug concentration consists of a central drug-loaded core and a discrete number of drug

“packets” near the gel surface, the latter of which are highly localised regions in the gel that are concentrated in drug

molecules and which are separated by wide drug-free zones. Moreover, we find that the hydrogel stiffness can be used in

tandem with the optimal loading to further tune the drug-release profile and mitigate the burst effect over a wide range of

dosage intervals. 

The paper is organised as follows. In Section 2 , we present a model of a drug-loaded hydrogel. In Section 3 , the equi-

librium degree of swelling is computed and its impact on the drug mobility is assessed. We also explore the drug-release

profiles for a uniform loading of drug molecules. A theory for the optimal drug loading is developed in Section 4 and applied

to specific scenarios in Section 5 . The paper concludes in Section 6 . 

2. Mathematical modelling 

We consider the evolution of a spherical, drug-loaded hydrogel after it is placed in an aqueous environment. The drug 

molecules are assumed to be too large to move through the polymer network when the gel is in its initial, undeformed

state. For simplicity, it is assumed that the system remains axisymmetric during swelling and drug release. 
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Due to the large deformations that occur during swelling, the mechanical response of the hydrogel is described using the 

framework of nonlinear elasticity. On sufficiently long time scales, the polymers may rearrange to relax the elastic stress, 

resulting in a viscoelastic material response [20,21] . Moreover, the polymer network may degrade [22,23] . Neither of these

features will be considered here. 

Several thermodynamically consistent hydrogel models based on finite-strain elasticity have been proposed [24–26] . 

These models typically assume that the polymer network is swollen by a solute-free liquid and describe the evolution of 

the mixture towards a state of minimum energy. The addition of a solute, such as drug molecules, can alter the energetic

landscape of the system and impact the transport of fluid via cross-diffusion, both of which require extended models to 

capture [27] . In the context of drug-delivery systems, the volume (or mass) fraction of drug molecules is often small [20] .

Consequently, the chemo-mechanics of swelling will not be strongly influenced by the presence of drug molecules [28] and 

cross-diffusion can be neglected. In formulating the model below, we invoke the assumption that the drug molecules are 

dilute. As a result, there will be a partial decoupling of the model: governing equations for the hydrogel can be formu-

lated and solved independently from those for the drug. This decoupling will be the key to developing a fast algorithm for

optimising the initial drug distribution. 

2.1. Bulk equations for the hydrogel 

The governing equations for the hydrogel have been derived using thermodynamic arguments by Hennessy et al. [29] ; 

here we specialise the results to a spherical geometry. The equations are formulated in terms of Lagrangian coordinates 

X associated with the stress-free reference configuration, which is taken to be a dry hydrogel with radius R 0 . The use of

Lagrangian coordinates avoids the introduction of a free boundary into the problem. The Lagrangian gradient operator is 

denoted by ∇ X and is expressed in terms of the usual spherical coordinates. The Eulerian coordinates associated with the 

current (swollen) configuration are denoted by x . For the axisymmetric configurations considered here, we can write X = R e r 
and x = r(R, t) e r , where R and r are Lagrangian and Eulerian radial coordinates, respectively, and e r is the radial basis vector. 

The deformation gradient tensor F = ∇ X x describes the local distortion of material elements, whereas its determinant, J = 

det F , describes the volumetric changes of material elements. For axisymmetric deformations in spherical geometries, the 

appropriate form of the deformation gradient tensor is readily calculated as 

F = λr e r � e r + λθ e θ � e θ + λϕ e ϕ � e ϕ , (1) 

where e θ and e ϕ are the polar and azimuthal basis vectors, � denotes the dyadic product of two vectors, and 

λr = 

∂r 

∂R 

, λθ = λϕ = 

r 

R 

, (2) 

are the principal stretches in the radial, polar, and azimuthal directions. The polymer network and the imbibing fluid, as- 

sumed to be water, are treated as incompressible. This assumption, in combination with the limit of a dilute drug, implies

that volumetric changes in material elements must be solely associated with the imbibition of water molecules. We there- 

fore impose a molecular incompressibility condition given by 

J = λr λθλϕ = 1 + νw N 

w , (3) 

where νw and N 

w are the molecular volume and nominal concentration of water, respectively. Nominal concentrations are 

expressed in terms of the number of molecules per unit reference (undeformed) volume. The actual, or Eulerian, concentra- 

tion of water, i.e. the number of molecules per current (deformed) volume, is defined as n w = N 

w /J. The volume fraction of

water φw can then be defined as φw = νw n w . 

The conservation of water can be expressed as 

∂N 

w 

∂t 
+ 

1 

R 

2 

∂ 

∂R 

(
R 

2 Q 

w 

)
= 0 , (4) 

where t is time and Q 

w is the nominal diffusive flux given by 

Q 

w = −M 

w 

∂μw 

∂R 

. (5) 

The water mobility M 

w is defined as 

M 

w = 

N 

w 

k B T 

D 

w (J) 

λ2 
r 

, (6) 

with k B denoting Boltzmann’s constant, T the absolute temperature, D 

w the diffusivity of water in the polymer network, and

μw the chemical potential of water. The factor of λ−2 
r in (6) is a result of mapping Fick’s law in the current configuration to

the reference configuration. The water diffusivity is expressed as 

D 

w = D 

w 

0 
ˆ D 

w (J) , ˆ D 

w (J) = J a , (7) 

where ˆ D 

w is a dimensionless function and a is a positive parameter that characterises how strongly the rate of diffusion

increases as the polymer network expands. Typically, a = 1 . 5 ; see Bertrand et al. [30] . 
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The chemical potential of water can be expressed as 

μw = μw 

0 + νw (�w + p) , (8) 

where μw 

0 is the chemical potential of a pure bath of water, �w is the osmotic pressure of water, and p is the mechanical

pressure. The osmotic pressure captures fluid transport that is driven by concentration gradients and is given by 

�w = 

k B T 

νw 

[
log 

(
νw N 

w 

1 + νw N 

w 

)
+ 

1 + νw N 

w + χ

(1 + νw N 

w ) 2 

]
. (9) 

The Flory parameter χ describes the strength of energetically unfavourable interactions between polymers and water 

molecules. Typically, a large value of χ corresponds to a low degree of swelling, as it becomes energetically costly for 

fluid and polymers to mix. The dependence of the chemical potential on the mechanical pressure captures transport of fluid 

down stress gradients and leads to stress-assisted diffusion. The chemical potential (8) –(9) is systematically obtained by 

differentiating the free energy density with respect to the nominal water concentration N 

w ; thus, it has units of Joules. For

details of the derivation, see Hennessy et al. [29] . 

Conservation of linear momentum is given by 

1 

R 

2 

∂ 

∂R 

(
R 

2 S r 
)

− 1 

R 

(
S θ + S ϕ 

)
= 0 , (10a) 

S θ − S ϕ = 0 , (10b) 

where S i are the principal first Piola–Kirchhoff stresses. The components of the stress can be decomposed into elastic com- 

ponents 
i and a pressure component such that 

S i = 
i − pJλ−1 
i 

. (11) 

The hydrogel is assumed to be a hyperelastic material described by a neo-Hookean strain energy. Consequently, the elastic 

components of the stress can be written as 


r = G (λr − λ−1 
r ) , 
θ = 
ϕ = G (λθ − λ−1 

θ
) , (12) 

where G is the shear modulus of the polymer network. 

2.2. Bulk equations for drug diffusion 

As with the hydrogel model, the equations that govern the transport of drug molecules are written in terms of Lagrangian

coordinates. We let N 

d represent the nominal concentration of drug molecules, which must obey the conservation law 

∂N 

d 

∂t 
+ 

1 

R 

2 

∂ 

∂R 

(
R 

2 Q 

d 
)

= 0 . (13) 

The volume fraction of drug φd is defined as φd = νd N 

d /J, where νd is the volume of a drug molecule. The dilute-drug limit

requires φd � 1 . The diffusive flux of drug molecules, Q 

d , is given by 

Q 

d = −D 

d (J) 

λ2 
r 

∂N 

d 

∂R 

. (14) 

Various forms of the drug diffusivity D 

d appear in the literature. A common choice is a Fujita-type expression, in which

the drug diffusivity is assumed to exponentially increase with the water concentration. Such forms are suitable for models 

that neglect the mechanics of the polymer network [31] or which only consider small deformations [21] because the water

concentration can serve as a proxy for the degree of swelling that occurs in each material element. Given that our model

explicitly captures finite deformations of the polymer network, we choose an expression for the drug diffusivity based on 

free-volume theory [20] : 

D 

d (J) = D 

d 
∞ ̂

 D 

d (J ) , ˆ D 

d (J ) = exp 

[
− β

J − 1 

]
. (15) 

The fitting parameter β > 0 controls how strongly the drug diffusivity increases with the volumetric expansion of the poly- 

mer network. The value of D 

d ∞ 

describes the diffusivity of drug molecules when they are uninhibited by the polymer net-

work. 

2.3. Boundary and initial conditions 

At the centre of the hydrogel, R = 0 , we impose 

r(0 , t) = 0 , (16) 
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which ensures that the origin in the current state is mapped to the origin in the reference state. In addition, we impose

no-flux conditions on the water and drug molecules: 

Q 

w (0 , t) = 0 , (17a) 

Q 

d (0 , t) = 0 . (17b) 

At the free surface of the hydrogel, R = R 0 , we impose continuity of the chemical potential of water and a stress-free

condition, which leads to 

μw (R 0 , t) = μw 

0 , (18a) 

S r (R 0 , t) = 0 . (18b) 

In (18) , we have set the pressure in the surrounding water to be zero. The surrounding environment is assumed to be a

perfect sink for the drug. Therefore, we impose that the concentration of drug at the free surface of the hydrogel is zero: 

N 

d (R 0 , t) = 0 . (19) 

Consequently, the steady-state configuration will correspond to a swollen, drug-free hydrogel. 

Initially, the hydrogel is in a dry state that does not contain water molecules but which is loaded with drug molecules.

The initial concentration of drug is denoted by d. Therefore, the initial conditions for the model are 

N 

w (R, 0) = 0 , N 

d (R, 0) = d(R ) . (20) 

Since the hydrogel is initially undeformed, the nominal and actual concentrations coincide at t = 0 . Thus, the initial volume

fraction of drug is given by φd (R, 0) = νd d(R ) . The initial ratio of the total drug volume to the total volume can be defined

as 

ε = 

3 

R 

3 
0 

∫ R 0 

0 

νd d(R ) R 

2 d R < 1 . (21) 

We will impose a value of ε � 1 to assist in defining the target drug-release profiles. Given that both φd and ε represent

volume fractions of drug, we will refer to φd as the local drug fraction and ε as the global drug fraction. 

2.4. Drug efflux and target profiles 

The flux of drug molecules out of the hydrogel, hereafter referred to as the efflux, is defined as 

F (t) = − d 

d t 

[
4 π

∫ R 0 

0 

N 

d (R, t) R 

2 d R 

]
= 4 πR 

2 
0 Q 

d (R 0 , t) . (22) 

By integrating the first equality in (22) in time and using (21) , we see that the efflux F must satisfy the condition ∫ ∞ 

0 

F (t) d t = 

4 πR 

3 
0 ε

3 νd 
. (23) 

From this point forward, (23) will be used in place of (21) . We now let A (t) denote a target flux profile that is desirable to

achieve in practical situations. We will be particularly concerned with piecewise-constant target profiles of the form 

A (t) = 

{
A 0 , 0 ≤ t ≤ τ, 

0 , otherwise , 
(24a) 

where τ is referred to as the drug-release period and it describes the amount of time needed for all of the drug molecules

to be released from the hydrogel. The constant A 0 is determined by imposing the constraint in (23) , which ensures that the

actual efflux F and the target efflux A lead to the same amount of drug being delivered. Therefore, we must have that 

A 0 = 

4 πR 

3 
0 ε

3 τνd 
. (24b) 

The target profile given by (24) has significant physical meaning, as often the goal of drug delivery through hydrogels is

to steadily release the drug over a set period of time [32] . The aim of this paper is to determine the initial concentration

of drug molecules in the gel that minimises the error between the efflux F (t) and the target profile A (t) . The piecewise-

constant target profiles in (24) provide an excellent means of testing the robustness of our optimisation approach because 

the discontinunity when t = τ is difficult to approximate. 
653 



M. J. Penn and M.G. Hennessy Applied Mathematical Modelling 112 (2022) 649–668 

 

 

 

 

 

 

 

 

 

2.5. Non-dimensionalisation 

The governing equations are written in dimensionless form using the initial gel radius R 0 as the length scale and R 2 
0 
/D 

w 

0 
as

the time scale. Thus, we write R = R 0 ̂  R , r = R 0 ̂  r , and t = (R 2 
0 
/D 

w 

0 
) ̂ t , where hats are used to denote non-dimensional quantities.

The chemical potential of water is written as μw = μw 

0 
+ k B T ˆ μw . The nominal concentrations, the diffusive fluxes, and the

drug efflux are written as 

N 

w = 

1 

νw 

ˆ N 

w , N 

d = 

ε

νd 
ˆ N 

d , Q 

w = 

D 

w 

0 

νw R 0 

ˆ Q 

w , Q 

d = 

εD 

d 
∞ 

νd R 0 

ˆ Q 

d , F = 

εR 0 D 

w 

0 

νd 
ˆ F . (25) 

The elastic stresses and the pressure are non-dimensionalised according to 
r = G ̂

 
r , 
θ = G ̂

 
θ , and p = G ̂  p . The water and

drug diffusivities are written as D 

w = D 

w 

0 
ˆ D 

w and D 

d = D 

d ∞ ̂

 D 

d , where ˆ D 

w and 

ˆ D 

d are defined in (7) and (15) , respectively. In

the dimensionless equations presented below, the hats on the variables will be dropped. 

The dimensionless equations for the hydrogel are as follows. The conservation of water reads as 

∂N 

w 

∂t 
= 

1 

R 

2 

∂ 

∂R 

(
R 

2 M 

w 

∂μw 

∂R 

)
, (26a) 

where the water mobility is given by M 

w = N 

w J a /λ2 
r . The chemical potential of water in the gel is given by 

μw = log 

(
N 

w 

1 + N 

w 

)
+ 

1 + N 

w + χ

(1 + N 

w ) 2 
+ Gp, (26b) 

where G = νw G/ (k B T ) is a non-dimensional elastic modulus that characterises the energy increase due to elastic deforma-

tions relative to the energy decrease of inserting a water molecule into the polymer network. The radial stress balance can

be reduced to 

∂
r 

∂R 

+ 

2(
r − 
θ ) 

R 

= λ2 
θ

∂ p 

∂R 

. (27a) 

The elastic components of the stress are written as 


r = λr − λ−1 
r , 
θ = λθ − λ−1 

θ
, (27b) 

where the non-dimensional expressions for the radial and orthoradial stretches λr and λθ are identical to those in (2) . The

molecular incompressibility condition can be formulated as 

J = λr λ
2 
θ = 1 + N 

w . (28) 

Equations (26) –(28) are solved with the following boundary and initial conditions: 

r(0 , t) = 0 , 
∂μw 

∂R 

∣∣∣∣
R =0 

= 0 , μw (1 , t) = 0 , S r (1 , t) = 0 , N 

w (R, 0) = 0 , (29) 

where the non-dimensional total radial stress S r has the same form as in (11) . 

The diffusion equation that governs the transport of drug molecules through the hydrogel can be written in dimension- 

less form as 

∂N 

d 

∂t 
= 

D 

R 

2 

∂ 

∂R 

(
R 

2 D 

d (J) 

λ2 
r 

∂N 

d 

∂R 

)
, (30a) 

where D = D 

d ∞ 

/D 

w 

0 
. The boundary and initial conditions for the drug concentration are 

∂N 

d 

∂R 

∣∣∣∣
r=0 

= 0 , N 

d (1 , t) = 0 , N 

d (R, 0) = d(R ) . (30b) 

Due to the choice of non-dimensionalisation, the initial volume fraction of drug is given by φd (R, 0) = εd(R ) . The dilute

limit therefore requires that d = O (ε−1 ) as ε → 0 . The non-dimensional drug efflux is defined as and must satisfy 

F (t) = − d 

d t 

(
4 π

∫ 1 

0 

N 

d (R, t) R 

2 d R 

)
, 

∫ ∞ 

0 

F (t) d t = 

4 

3 

π. (31) 

Similarly, non-dimensionalising the piecewise-constant target profiles in (24) leads to 

A (t) = 

{
4 π/ (3 τ ) , 0 ≤ t ≤ τ, 

0 , otherwise . 
(32) 
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2.6. Parameter estimation 

The initial radius of the hydrogel is assumed to be 2 mm. Gels of this size would likely be surgically implanted into the

body or placed directly onto the skin for transdermal drug delivery [5] . Water has a molar volume of 18 · 10 −6 m 

3 mol −1 .

Dividing by Avogadro’s number gives a molecular volume of νw = 3 . 0 · 10 −29 m 

3 . The shear modulus of the gel, G , is taken

to be a control parameter. Typical values range from about 10 kPa to 10 0 0 kPa. The Flory interaction parameter χ depends

on the specific type of polymers used to create the gel as well as the choice of solvent and is generally a function of

composition. However, its value often lies between 0 (for athermal mixtures) and 3. For simplicity, we treat χ as a constant.

Drozdov et al. [26] fitted a similar hydrogel model to experimental data and reported a solvent diffusion coefficient of 

D 

w 

0 
∼ 10 −9 m 

2 s −1 . We follow Caccavo et al. [20] and assume that β = 1 . 0 and that the drug diffusivity D 

d ∞ 

lies in the range

10 −12 m 

2 s −1 to 10 −10 m 

2 s −1 . For reference, the diffusivity of paracetamol in water is roughly 6 . 5 · 10 −10 m 

2 s −1 [33] . The

diffusivity of larger macromolecules such as proteins is expected to be substantially smaller. The temperature is fixed at 

293 K. 

Using these parameter estimates, we find that the non-dimensional shear modulus, G, is between 7 · 10 −5 and 7 · 10 −3 ,

the smallness of which is characteristic of a soft solid. The diffusivity ratio D lies between 10 −3 to 10 −1 . The time scale of

fluid diffusion, R 2 
0 
/D 

w 

0 
, is roughly one hour. Therefore, we assume that the non-dimensional drug-release period τ appearing 

in the target flux profile (24) ranges from 6 to 24, corresponding to drug release over a 6- to 24-hour window. 

2.7. Finite-difference discretisation 

The non-dimensional hydrogel model (26) –(29) is solved using a semi-implicit finite-difference method with a staggered 

grid. The Lagrangian spatial domain, 0 ≤ R ≤ 1 , is discretised into cells of uniform width. The Eulerian radial coordinate

r is solved for on cell edges whereas the pressure p and the nominal fluid fraction N 

w are solved for on cell midpoints. 

The conservation equation for the fluid (26a) is discretised in time using Euler’s method. All quantities in the dimension-

less system (26) –(29) are treated implicitly, with the exception of the mobility M 

w in (26a) , which is treated explicitly.

This choice provides greater numerical stability during the first few time steps, where large gradients in the fluid frac- 

tion and radial stretch develop. The resulting nonlinear algebraic system is solved using Newton’s method at each time 

step. 

Once the solution to the gel problem is obtained, the linear diffusion problem for the drug (30) is solved using an implicit

Euler method. The equations are discretised using the same staggered grid for the hydrogel, with the drug concentration N 

d 

found on cell midpoints. 

3. Benchmarking 

The equilibrium states provide valuable information about how swollen the gel becomes for a given set of parame- 

ters. From this information, it is possible to assess the change in drug diffusivity that occurs during the swelling process.

The equilibrium states correspond to homogeneous gels with swelling ratio J = J ∞ 

. The radial and orthoradial stretches are

therefore equal and given by λr = λθ = J 1 / 3 ∞ 

. The chemical potential of water μw and the radial component of the first

Piola–Kirchhoff stress S r are both uniform and, from the boundary conditions in (29) , equal to zero. The latter can be used

to obtain an expression for the pressure given by p = J −1 / 3 
∞ 

− J −1 ∞ 

. Thus, by writing the nominal drug concentration in terms

of the swelling ratio J using the incompressibility condition (28) and eliminating the pressure in the chemical potential 

(26b) , we find that the equilibrium states satisfy 

log (1 − J −1 
∞ 

) + J −1 
∞ 

+ χ J −2 
∞ 

+ G(J −1 / 3 
∞ 

− J −1 
∞ 

) = 0 . (33) 

Once the unique solution for J ∞ 

is obtained from (33) , the equilibrium drug diffusivity D 

d (J ∞ 

) , which represents the maxi-

mum value of the drug diffusivity during swelling, can be computed by evaluating (15) . 

As the Flory interaction parameter χ increases, there is a marked decrease in the degree of swelling that occurs for all

gel stiffnesses; see Fig. 1 (a). Consequently, the equilibrium drug diffusivity decreases as well; see Fig. 1 (b). The curves for

the equilibrium swelling ratio and drug diffusivity converge when χ > 0 . 7 , indicating that elasticity no longer plays a role in

determining the equilibrium. For χ < 0 . 7 , the degree of swelling becomes strongly dictated by the gel stiffness G, with softer

gels (smaller G) undergoing larger deformations. Correspondingly, the equilibrium drug diffusivity increases with decreasing 

G as well. For the softest gels ( G = 7 · 10 −5 ), the drug diffusivity D 

d approaches unity, implying that drug diffusion becomes

uninhibited by the presence of the polymer network. 

The increase in drug diffusivity due swelling is counteracted by the increase in distance that drug molecules must travel 

to reach the free surface. This increase in distance is captured by the factor of λ−2 
r in (30a) , which is equal to J −2 / 3 

∞ 

at

equilibrium. We can thus define the equilibrium drug mobility as D 

d (J ∞ 

) J −2 / 3 
∞ 

to capture the competing effects of increases

in diffusivity and gel size. For 0 < χ < 0 . 7 , the equilibrium mobility increases with the gel stiffness, as seen in Fig. 1 (c).

Thus, stiffer gels are, in fact, more effective at releasing drug molecules because the reduction in gel size completely offsets
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Fig. 1. Equilibrium values of the (a) swelling ratio J ∞ , (b) drug diffusivity D d (J ∞ ) , and (c) drug mobility D d (J ∞ ) J 
−2 / 3 
∞ , plotted as functions of the Flory 

interaction parameter χ for different non-dimensional gel stiffnesses G. The diffusivity D d is given by (15) . 

Fig. 2. Numerical solution when the drug molecules are initially uniformly distributed throughout the hydrogel. (a) Heatmap of the Eulerian water concen- 

tration n w = N w /J, which is equivalent to the volume fraction of water. (b) Heatmap of the Eulerian drug concentration n d = N d /J. The solutions are plotted 

in terms in the Eulerian radial coordinate r. The solid black line denotes the position of the free surface of the gel. The parameter values are χ = 0 . 5 , 

D = 0 . 1 , and G = 7 · 10 −4 . 

 

 

 

 

 

 

 

 

 

 

 

the smaller drug diffusivity. The strong dependence of the drug mobility on the gel size underscores the importance of 

capturing finite deformations in the model. 

We explore the baseline drug-release dynamics for various gel stiffnesses by assuming that the initial loading of the drug 

is uniform; that is, we take d(R ) ≡ 1 . The Flory parameter is set to χ = 0 . 5 in order to capture changes in the equilibrium

state with gel stiffness. The governing equations are numerically solved and the Eulerian concentrations of water and drug 

molecules, n w = N 

w /J and n d = N 

d /J, respectively, are computed. Due to the choice of non-dimensionalisation, n w is equiv-

alent to the volume fraction of water. The Eulerian concentrations are expressed in terms of time t and the Eulerian radial

coordinate r and are plotted as heatmaps in Fig. 2 for a gel stiffness of G = 7 · 10 −4 . The black solid line represents the posi-

tion of the free surface of the hydrogel. Upon exposing the hydrogel to an aqueous environment, water molecules penetrate 

the polymer network and are transported into the bulk, resulting in the size of the gel increasing with time; see Fig. 2 (a).

The drug molecules remain immobile, and hence the drug concentration remains unchanged, until a sufficient number of 

solvent molecules have arrived to expand the polymer network; see Fig. 2 (b). Due to water entering the hydrogel from the

free surface, the drug molecules that are the closest to the free surface are the first to mobilise. Thus, the flow of water

into the bulk of the gel creates a counterflow of drug molecules towards the free surface. The dynamics shown in Fig. 2 are

characteristic of those observed for different gel stiffnesses. 

The kinetics of drug release and their dependence on the gel stiffness can be examined in more detail by computing the

drug efflux F (t) according to (22) and the fractional drug release defined as 

R (t) = 1 − M (t) 

M (0) 
, M (t) = 4 π

∫ 1 

0 

N 

d (R, t) R 

2 d R. (34) 

The numerical results are shown in Fig. 3 , where, for reference, we also plot a target profile in which the drug efflux is

constant over a 24-hour period, corresponding to a piecewise-linear fractional drug release. We consistently observe a large 

initial “burst” where the drug efflux is large, resulting in a rapid release of drug from the gel. In particular, half of the drug
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Fig. 3. Drug-release dynamics with a uniform initial loading of drug molecules, d(R ) ≡ 1 . (a) The efflux of drug molecules. (b) The fractional amount of 

drug released into the environment. The parameter values are χ = 0 . 5 and D = 0 . 1 . 

 

 

 

 

 

 

 

 

 

molecules are released within the first four hours. The softest gels have the slowest drug-release kinetics, as expected from 

the equilibrium drug mobility seen in Fig. 1 (c), and thus provide the closest approximation to the target profile. 

4. Theory of optimal drug loading 

The bursting observed in Fig. 3 is a generic phenomenon that occurs for all parameter values. Achieving a uniform efflux,

or a linear drug-release profile, simply by parameter variation is not possible. Therefore, we explore how the initial drug 

concentration d(R ) can be varied to bring the efflux F (t) as close as possible to a prescribed target profile A (t) . 

4.1. Problem definition 

The objective function that measures the difference between F (t) and A (t) is taken to be 

H(d) := 

∫ ∞ 

0 

(F (t) − A (t )) 2 d t , (35) 

which penalises sustained deviations from the target profile; short periods of time where the drug release is different from 

the desired profile are unimportant. A similar objective function was used by Lu et al. [17] , but here we ignore the cost of

the drug, which is constant for a fixed value of ε, corresponding to a fixed amount of drug. While (35) is a good measure of

the “closeness” of F (t) and A (t) , it is also important to impose that the total drug delivered is the same as the target total

amount. This means ∫ ∞ 

0 

F (t) d t = 

∫ ∞ 

0 

A (t) d t = 

4 

3 

π. (36) 

The only other constraint on the function d(R ) is that 

d(R ) ≥ 0 , ∀ R ∈ (0 , 1) . (37) 

The endpoint value d(1) = 0 , which is necessary for the boundary conditions, can be ignored as it contributes zero volume

of drug to the system. For the moment, we will consider an infinitely dilute drug with ε → 0 and thus will not impose an

upper bound on d. Thus, the aim is to minimise (35) subject to (36) and (37) . 

4.2. Impossibility of a perfect solution 

It may seem that there is enough freedom in choosing d(R ) to ensure that F (t) ≡ A (t) for each possible choice of target

profile A . However, the long-time behaviour of drug release means that this is not the case. Recall that, at long times, the

hydrogel expands to a uniform equilibrium, as discussed in Section 3 . Thus, by assuming the convergence to the equilibrium

state is uniform, then, to leading order, the diffusion equation for the drug becomes 

∂N 

d 

∂t 
∼ DD 

d (J ∞ 

) J −2 / 3 
∞ 

R 

2 

∂ 

∂R 

(
R 

2 ∂N 

d 

∂R 

)
as t → ∞ . (38) 
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By seeking a separable solution, it is straightforward to show that the leading behaviour in time of the efflux is given by 

F (t) = − d 

d t 

(
4 π

∫ 1 

0 

R 

2 N 

d (R, t) d R 

)
= O 

(
exp 

(
−DD 

d (J ∞ 

) J −2 / 3 
∞ 

πt 
))

as t → ∞ . (39) 

Thus, if the target profile A (t) has slower-than-exponential decay, for example, then it is impossible that F (t) = A (t) every-

where, so any optimal solution will have a non-zero value of H. 

4.3. Formulation of a discrete optimsation problem 

The linearity of the drug-diffusion problem (30) can be exploited to derive a discrete optimisation problem that ap- 

proximates the full problem given by (35) –(37) . First suppose { N 

d 
i 
(R, t) } i is a set of M functions satisfying the drug-diffusion

equation (30a) and its boundary conditions (30b) , with initial conditions { ξi (R ) } i . Moreover, let { f i (t) } i be the corresponding

drug effluxes. Suppose further that d i are real constants. Then, by defining the initial drug concentration as 

d(R ) = 

M ∑ 

i =1 

d i ξi (R ) , (40a) 

the solution for the drug concentration N 

d and the drug efflux F can be written as 

N 

d (R, t) = 

M ∑ 

i =1 

d i N 

d 
i (R, t) , F (t) = 

M ∑ 

i =1 

d i f i (t) . (40b) 

In light of (40b) , we refer to each f i as a partial efflux. The initial drug concentration d(R ) in (40a) is now written as a

sum of spherical delta functions that are centred at M distinct radial coordinates 0 < R i < 1 by defining 

ξi (R ) = 

δ(R − R i ) 

4 πR 

2 
, i = 1 , 2 , . . . , M. (41) 

Each weight d i in (40a) therefore corresponds to the number of drug molecules located at the point R i . The discrete optimi-

sation problem will compute the optimal values for the M weights d 1 , d 2 , . . . , d M 

. Since f i (t) denotes the drug efflux that is

obtained from using ξi as an initial condition, we have that ∫ ∞ 

0 

f i (t) d t = 4 π

∫ 1 

0 

ξi (R ) R 

2 d R = 1 , (42) 

which implies that ∫ ∞ 

0 

F (t) d t = 

M ∑ 

i =1 

d i 

∫ ∞ 

0 

f i (t) d t = 

M ∑ 

i =1 

d i . (43) 

By collecting the weights d i into a vector d = (d 1 , d 2 , . . . , d M 

) , we can formulate the following discrete optimisation problem:

min 

{ 

H( d ) : d ≥ 0 , 

M ∑ 

i =1 

d i = 

∫ ∞ 

0 

A (t ) d t 

} 

, (44) 

where the objective function H is now 

H( d ) = 

∫ ∞ 

0 

( 

M ∑ 

i =1 

d i f i (t) − A (t) 

) 2 

d t, (45) 

which is a quadratic function of the variables d i . To practically calculate the integral in (45) , it is necessary to restrict the

domain of integration to [0 , T ] for some large T ; we find that T = 50 is a sensible choice. 

4.4. Convexity of the objective function 

A useful property of the objective function H given by (45) is that it is a convex, quadratic function of d . This can be

seen by expanding the integrand to give 

H( d ) = 

M ∑ 

i =1 

M ∑ 

j=1 

(
d i d j 

∫ ∞ 

0 

f i (t) f j (t) d t 

)
− 2 

M ∑ 

i =1 

(
d i 

∫ ∞ 

0 

A (t) f i (t) d t 

)
+ 

∫ ∞ 

0 

A (t ) 2 d t , (46) 

which can be concisely written as 

H( d ) = 

1 

2 

d 

T 
S d − d 

T 
q + 

∫ ∞ 

A (t ) 2 d t , (47) 

0 
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where S ∈ R 

M×M and q ∈ R 

M are defined by 

S i j = 2 

∫ ∞ 

0 

f i (t) f j (t) d t, q i = 2 

∫ ∞ 

0 

A (t) f i (t) d t. (48)

In particular, S is positive semi-definite as, for any v ∈ R 

M , 

v T S v = 2 

∫ ∞ 

0 

M ∑ 

i =1 

M ∑ 

j=1 

(
v i f i (t) f j (t) v j 

)
d t = 2 

∫ ∞ 

0 

( 

M ∑ 

i =1 

v i f i (t) 

) 2 

d t ≥ 0 . (49) 

Therefore, H is convex as S is the Hessian matrix of H. Using standard convex programming results [34] , we can prove that

a constrained global minimum exists and that constrained local and global minima are equivalent; details of the proofs are 

provided in Appendix A . Thus, the global minimum can be calculated by simply finding a local minimum. For the remainder

of this paper, the optimal value of H will be denoted as H 

∗. 

4.5. Numerical implementation 

The discrete optimisation problem (44) –(45) is numerically solved by discretising the governing equations using the 

finite-difference method described in Section 2.7 . In particular, the radial domain is discretised into M cells of width �R =
1 /M. The radial coordinates R i used to formulate the discrete optimisation problem (see (41) ) are chosen to coincide with

the positions of the M cell midpoints. The domain of each cell can then be defined as �i = { R : R −
i 

< R < R + 
i 
} where R ±

i 
=

R i ± �R/ 2 represent the cell edges. The spherical delta functions given by (41) are replaced with step functions defined by 

ξi (R ) = 

{
3 

4 π

[
(R 

+ 
i 
) 3 − (R 

−
i 
) 3 

]−1 
, R ∈ �i , 

0 , otherwise , 
(50) 

where i = 1 , 2 , . . . , M. The functions ξi in (50) can be interpreted as localised packets of drug located at the i -th cell. 

For a given set of parameter values, we first numerically solve the dimensionless hydrogel equations. We then numeri- 

cally solve the drug-diffusion problem using each initial condition ξi in (50) to compute the drug concentration N 

d 
i 

and the

partial efflux f i . The set of partial effluxes { f i } i is then used to construct the discrete optimisation problem (44) –(45) . Specif-

ically, the matrix S and vector q defined in (48) are built. Once construction is complete, the discrete optimisation problem

is solved using MATLAB’s quadratic programming algorithm quadprog . The analytical results developed in Section 4.4 and 

Appendix A ensure that quadprog will rapidly converge to a global minimum. The ability to pre-compute the partial ef- 

fluxes, which requires one solution to the nonlinear hydrogel model and M solutions of the linear drug-diffusion model, 

results in a highly efficient scheme for the numerical optimisation. After determining the optimal weights d i , the total efflux

F and the drug concentration N 

d can be constructed using (40b) . 

In practice, we use M = 200 cells when solving the hydrogel and drug-diffusion equations. A fixed time step of �t = 0 . 05

is generally used; however, in Fig. 2 , we set �t = 0 . 01 . Studies of grid independence and the dependence of the computa-

tional time on the size of M are provided in Appendix B . All code is executed on a laptop with a 2.6 GHz Intel Core i5-1145G7

processor with 32 GB of RAM. Moreover, the default options for quadprog are used. 

Finally, it is important to point out that the number of initial conditions ξi and partial effluxes f i that are used in the

discrete optimisation problem, M, does not have to match the number of cells that are used in the finite-difference dis-

cretistion of the hydrogel and drug-diffusion equations. When using a fine mesh or extending the model to multiple spatial 

dimensions, it may be necessary to use a value of M that is small compared to the number of computational cells to reduce

the degrees of freedom in the optimisation problem and ensure it remains feasible to solve. 

4.6. The partial effluxes from localised drug loadings 

The partial effluxes f i (t) obtained from the localised drug packets given by (50) act as basis functions in the construction

of the total efflux F (t) , as seen in (40b) . Therefore, the key to understanding the optimal solution lies in the time evolution

of the partial effluxes f i (t) . If a drug packet is placed sufficiently close to the free boundary of the gel, then the correponding

efflux f i monotonically decreases from a large initial value; see Fig. 4 . In this case, the large initial efflux is driven by the

incompatibility between the initial condition and the perfect sink boundary condition, the latter of which forces the drug 

concentration to rapidly tend to zero. If a drug packet is placed in the bulk of the gel, then the efflux first increases from

zero to a peak value, after which it exponentially decays. The transient increase in efflux is driven by the increase in drug

mobility that occurs due to swelling. As drugs are placed further from the outer boundary, the longer it takes for the efflux

to reach its peak value, as can be seen from Fig. 4 . Eventually, all of the effluxes f i exponentially decay with the same rate,

highlighting the unavoidable long-term behaviour of the drug efflux discussed in Section 4.2 . 

From the observations made from Fig. 4 , it follows that the drug concentration close to the boundary can be utilised to

capture the target profile A (t) at small times. The drug concentration in the bulk of the gel enables the target profile to be

captured at intermediate times. Capturing the target profile after all of the effluxes f i have peaked is particularly difficult 

and requires amplifying the drug concentration near the gel centre at the expense of potential overshoots at intermediate 

times. 
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Fig. 4. Plots of the partial drug effluxes f i (t) for i = 1 , i = 100 , and i = 199 due to the packet-like initial concentrations (50) . The values of i correspond to 

R = 0 , R = 0 . 5 and R = 1 , respectively. The parameter values are χ = 0 . 5 , D = 0 . 1 , and G = 7 · 10 −4 . The numerical simulations are based on using M = 200 

cells. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5. Case studies 

We apply our theory of optimal drug loading to specific scenarios by considering non-dimensional piecewise-constant 

target profiles with the same form as (32) . 

5.1. Optimal solutions for a 12-hour drug-release period 

As a generic example, we compute the optimal solution when τ = 12 , corresponding to a constant release of drug over a

12-hour period. The parameter values are set to χ = 0 . 5 , G = 7 · 10 −4 , and D = 0 . 1 , which are the same as those used when

computing the partial effluxes f i (t) in Fig. 4 . 

For this parameter set, constructing and solving the discrete optimisation problem took 22 seconds, which excludes the 

time needed to pre-compute the solution to the hydrogel model (5.4 seconds) and the set of partial effluxes (174 seconds).

When constructing the optimisation problem, the bulk of the time is spent on calculating the matrix S defined in (48) ;

obtaining the optimal solution using quadprog takes a fraction of a second. The codes to perform the pre-computations 

and construct the discrete optimisation problem are not optimised and therefore significant speed-ups should be possible. 

The dependence of these times on the computational mesh is studied in Appendix B . 

The optimal initial drug distribution is formed of distinct, concentrated packets that are separated by large drug-free 

regions; see Fig. 5 (a). The concentration in the packets decreases as their distance from the gel centre increases. Such a

distribution is expected on physical grounds. Small concentrations of drug near the free boundary offset the initial largeness 

of the corresponding partial effluxes seen in Fig. 4 . The drug in the central packet at R = 0 sustains the long-term drug

efflux. However, to reach the free surface, the drug molecules in the central packet must diffusively spread across the entire

gel, resulting in a diminished concentration gradient and hence diffusive flux. The largeness of the concentration in the 

central packet offsets this behaviour. The evolution of the Eulerian drug concentration n d , shown in Fig. 5 (b), highlights how

these drug-rich packets are immobilised and diffusion is supressed before the hydrogel locally swells. 

The corresponding optimal drug efflux F (t) consists of a sequence of pulses of increasing amplitude; see Fig. 5 (c). Each

pulse is associated with one of the packets in the initial drug concentration. The small quantity of drug in the packet near

R = 1 is responsible for the first pulse, which provides an approximation of the target profile A (t) for small times. Then,

as the pulse from this packet of drug diminishes, the pulse from the next packet begins, counteracting this decrease. This

pattern continues until the drug in the central packet nearest R = 0 is released to create the largest pulse, which then

exponentially decays. Due to the exponential tail, the optimal efflux overshoots the target profile after the discontinuity 

at t = 12 . The overshoot is compensated by a substantial undershoot beforehand when 7 < t < 12 . The undershoot is itself

compensated by an overshoot when 4 < t < 7 , and the sequence repeats until t = 0 . 

The gel stiffness G plays an important role in the optimal solution by modulating the equilibrium drug mobility 

D 

d (J ∞ 

) J −2 / 3 
∞ 

and hence the decay rate of the efflux F (t) . When χ = 0 . 5 , the mobility increases with the gel stiffness; see

Fig. 1 (c). For stiff gels with G = 7 · 10 −3 , the faster decay rate leads to less overshoot after the discontinuity in the target

profile, but results in much larger undershoots and overshoots beforehand; see Fig. 6 (a). For soft gels with G = 7 · 10 −5 , the

slower decay rate leads to a greater overshoot after the discontinuity, which is compensated by an efflux that is consistently 

below the target profile beforehand. 
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Fig. 5. Optimal drug-release kinetics. (a) The optimal initial drug concentration d(R ) . (b) Heatmap of the Eulerian drug concentration n d , plotted in terms 

of the Eulerian radial coordinate r. The solid black line denotes the position of the free surface of the gel. (c) The optimal drug efflux F (t) . The dashed 

black line represents the piecewise-constant target profile. The parameter values are χ = 0 . 5 , D = 0 . 1 , G = 7 · 10 −4 , and τ = 12 . 

Fig. 6. A comparison of optimal and target (a) effluxes and (b) fractional drug-release profiles for different gel stiffnesses G in the case of χ = 0 . 5 , D = 0 . 1 , 

and τ = 12 . 
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Table 1 

Computational times (in seconds) associated with solving the hydrogel equa- 

tions, computing the set of partial effluxes f i , and building and solving the dis- 

crete optimisation problem for different gel stiffnesses G. 

G Solve hydrogel model Compute { f i } i Optimisation Total 

7 · 10 −5 11 168 21 200 

7 · 10 −4 5.4 174 22 201 

7 · 10 −3 1.5 169 26 197 

Fig. 7. The variation in the optimal value of the objective function H ∗ with the gel stiffness G for different drug-release periods τ and non-dimensional 

drug diffusivities D. Here, we take χ = 0 . 5 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

By computing the fractional drug release using (34) , we find that the gel stiffness can be combined with the optimal

loading to tune the drug-release profile and, in particular, eliminate the burst effect. For an intermediate stiffness of G =
7 · 10 −4 , the target drug-release profile is perfectly captured during the first 7.5 hours, as shown in Fig. 6 (b), despite the

sequence of undershoots and overshoots that occur in the efflux. However, after 7.5 hours, there is a sharp decrease in

the release rate, resulting in a marked departure from the target profile and a prolongation of the drug-release period. In

particular, 19 hours are needed for 95% of the drug to be released. By increasing the gel stiffness to G = 7 · 10 −3 , the release

rate can be accelerated, which leads to a temporary overshoot compared to the target release profile but lessens the long-

term undershoot; in this case, only 14 hours are required for 95% of the drug to be released. Decreasing the stiffness to

G = 7 · 10 −5 leads to a slower drug-release profile that is consistently below the target curve. 

Due to the extra swelling that occurs as the gel stiffness is decreased, additional Newton iterations are required to ob-

tain convergence when numerically solving the hydrogel model. Consequently, it takes longer to compute a solution as the 

stiffness decreases; see Table 1 . However, the time that is needed to compute the partial effluxes f i (t) and subsequently

solve the discrete optimisation problem is not largely affected by the gel stiffness (see Table 1 ). This insentitivity is an ad-

vantage of our optimisation approach: additional complexity can be introduced into the hydrogel model without impacting 

the solution of the optimisation problem. 

5.2. Tuning the drug-release profile 

Motivated by the results in Fig. 6 , we now explore how the gel stiffness can be used to further optimise the drug-release

profile. More specifically, we compute the optimal value of the objective function H, denoted by H 

∗, across a range of gel

stiffnesses G and different combinations of the drug diffusivity D and drug-release period τ . 

We first consider the case when D = 0 . 1 . For a 12-hour drug-release period with τ = 12 , the curve of H 

∗ as a function of

G has a global, internal minimum at G = 7 · 10 −4 ; see Fig. 7 (a). Thus, the target profile is best approximated when the gel

stiffness is 7 · 10 −4 , in agreement with the results in Fig. 6 . Hydrogels that are stiffer or softer would increase or decrease

the equilibrium drug mobility, respectively, and hence lead to drug molecules that are released too quickly or slowly to be

optimal. The increase in drug-release rate that occurs for stiffer hydrogels can be advantageous for capturing target profiles 

with smaller drug-release periods. Conversely, softer hydrogels, with their slower drug-release kinetics, will be better suited 

for capturing target profiles with larger drug-release periods. Indeed, when the drug-release period τ is decreased to 6 

hours, the objective function H 

∗ monotonically decreases with G; when τ is increased to 18 or 24 hours, the objective 

function monotonically increases with G. 

Decreasing the drug diffusivity via the dimensionless parameter D leads to stiffer gels performing better, as seen in 

Fig. 7 (b)–(c). In this case, the reduction in swelling and the smaller radial extent of the hydrogel makes up for the decrease

in the rate of drug diffusion. As a final remark, the model can be simplified for small values of D by rescaling time as

t = D 

−1 t ′ and then taking the limit D → 0 . The resulting quasi-static model describes linear drug diffusion throughout a

uniformly swollen hydrogel that is in chemo-mechanical equilibrium with the surrounding environment. 
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Fig. 8. Optimal (a) initial drug concentrations d(R ) and (b) effluxes F (t) for different maximal drug dilutions, as measured through the global drug fraction 

ε defined by (21) . The parameter values are χ = 0 . 5 , G = 7 · 10 −4 , D = 0 . 1 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.3. Optimal solution with finite drug diluteness 

The numerical results in Section 5.1 –5.2 are based on the assumption of an infinitely dilute drug, as characterised by the

limit ε → 0 . However, in practice, the drug molecules can account for roughly 10% ( ε = 0 . 1 ) of the total initial volume [31] .

Thus, when computing the optimum initial volume fraction of drug, φd (R, 0) = εd(R ) , using the solution for d shown in

Fig. 5 (a), we see that it exceeds one. This unphysical result stems from not imposing upper bounds on the initial drug

concentration when working in the infinitely dilute limit. 

We now consider situations where the drug molecules have a finite diluteness. Thus, the global drug fraction ε is taken

to be a small but finite number. We assume that the initial volume fraction of drug fraction satisfies 0 < φd (R, 0) < 0 . 2 ,

which implies that 0 < d(R ) < 0 . 2 ε−1 . The optimisation theory developed in Section 4 still applies because the upper bound

on d(R ) translates into upper bounds on each d i in the discrete optimsation problem, which are straightforward to accom-

modate; see Appendix A for full details. Thus, the newly constrained discrete optimisation problem admits global minima 

that can be readily computed using Matlab’s quadprog function. 

As the global drug fraction ε is increased from zero, the optimal initial drug concentration d(R ) is found to retain a

structure that consists of several drug-loaded packets near the free boundary of the gel; see Fig. 8 (a). However, the central

packet near R = 0 that was observed in the infinitely dilute case ( ε → 0 ) has been replaced with a uniformly loaded core

in which the local drug fraction takes on its maximum value. The radial extent of the drug-loaded core increases with the

global drug fraction ε. To explain these results, we recall that the initial drug concentration becomes increasingly constrained 

as ε increases from zero. Thus, if the initial drug concentration for the infinitely dilute case has any packets that exceed the

maximum allowable concentration, then the drug molecules in these packets are simply distributed over a greater volume, 

that is, a over greater radial extent. Any packets that have concentrations below the maximum are mostly unaffected by 

the constraint, although their position might shift slightly. From the optimal initial drug concentrations, we can conclude 

that when increasing the total drug load for a fixed drug-release period τ , it is advantageous to preferentially place drug

molecules at the centre of the hydrogel. 

The similarities in the optimal initial drug profiles lead to optimal drug effluxes F (t) that still consist of pulse sequences

that overshoot and undershoot the target profile, as shown in Fig. 8 (b). However, due to the increase in the radial extent of

the drug-loaded core that occurs as ε increases, the penultimate overshoot in the efflux, characterised by that which leads to 

its maximum value, has a greater amplitude and occurs sooner in the drug-release process. Consequently, the drug-release 

kinetics will be more prone to bursting when additional drug molecules are loaded into the hydrogel and the drug-release 

period is held constant. 

When considering finite values of the global drug fraction ε, the hydrogel stiffness G can still be used to further tune the

drug-release profile. Specifically, stiffer and softer gels accelerate and decelerate the release of drug molecules, respectively; 

see Fig. 9 . However, compared to the case of an infinitely dilute drug, as shown in Fig. 6 (b) for the same parameter set, we

clearly see that a finite value of ε generally leads to a more rapid release of drug, particularly at small times. Thus, even the

optimal drug-release profiles exhibit stronger burst-like characteristics when more drug is loaded into the hydrogel. Tuning 

the hydrogel stiffness may be an effective means of further mitigating the burst effect in real-world applications, where the 

initial drug volume is indeed finite, and overcome limitations with simply optimising over the initial distribution of drug 

molecules. 
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Fig. 9. Optimised fractional drug-release profiles when the initial global drug fraction is fixed at ε = 0 . 1 . The other parameter values are χ = 0 . 5 and 

D = 0 . 1 . 

 

 

 

 

 

 

 

 

 

 

6. Conclusion 

The goal of this paper is to explore the possibility of optimising the drug-release profile in hydrogel-based drug-delivery 

systems by tuning the initial drug distribution. Thus, a model of a spherical drug-loaded hydrogel that captures large elastic 

deformations due to swelling is presented. By considering the limit of a dilute drug, the equations for the hydrogel decouple

from the equations for drug transport, the latter of which become linear in the drug concentration. Using this model, a

theory for optimising the drug-release profile via the initial drug concentration is developed. 

For target drug effluxes that are piecewise-constant functions, the optimal initial distribution of drug molecules generally 

consists of a central drug-loaded packet or core with several isolated packets near the hydrogel boundary. The radial extent 

of the central core increases with the amount of drug that is loaded into the hydrogel. Numerical simulations reveal that the

optimal initial drug concentrations are highly effective at mitigating the burst effect and limiting the initial release of drug 

into the surroundings. Moreover, the corresponding drug-release profiles provide reasonable approximations to the target 

profiles for all times. 

The hydrogel stiffness provides an additional parameter that can be used to tune the drug-release profile. However, the 

stiffness plays a non-trivial role in the drug-release kinetics because it affects both the drug diffusivity and the distance that

drug molecules must travel to reach the free surface. Softer hydrogels undergo a greater degree of swelling; as a result, the

drug diffusivity increases but so does the distance to the free surface. For the parameter range considered here, we find that

the rate of drug release is more strongly affected by variations in the radial extent of the hydrogel than variations in the

drug diffusivity. Consequently, softer hydrogels lead to slower drug-release kinetics and are better suited for applications 

that require the administration of drugs over long periods of time. Moreover, the strong dependence of drug transport on 

the size of the hydrogel highlights the importance of capturing finite deformations in the model. 

A natural avenue of future work is therefore to systematically optimise the gel stiffness by extending the methodology 

proposed here. The gel stiffness could be treated as a constant, or a spatial dependence could be introduced. From a physical

point of view, a spatially varying gel modulus would correspond to hydrogels with a bilayer or core-shell configuration. The 

results presented here also generate new questions about the impact of viscoelasticity and network degradation on the 

optimal loading of hydrogels. A reduction in the elastic stress due to viscous rearrangement of the polymers could trigger 

additional swelling and hence slow the release of drug molecules. Bulk degradation of the hydrogel, which could be captured 

by a decreasing gel stiffness in time, could have similar consequences. 

In this study, the dilute-drug assumption paves the way towards a fast approach for solving the optimisation problem. 

The efficiency of our approach relies on the ability to pre-compute the solutions of the hydrogel and drug-diffusion models. 

These solutions are then used to formulate a finite-dimensional algebraic optimisation problem, which can be solved in a 

fraction of a second. Moreover, the nonlinear hydrogel equations, which form the most complex part of the model, only 

need to be solved once when carrying out the optimisation for a given set of parameters. The dilute limit will likely lead

to significant computational advantages when investigating optimal drug delivery using extended models that capture, for 

example, the hydrodynamics of the surrounding environment or three-dimensional, non-spherical geometries. A detailed 

study of the non-dilute limit would also be insightful by capturing how the transport of drug molecules is affected by the

mechanical response of the hydrogel. Mathematical modelling will play a key role in understanding these points and thus 

lead to finer control over the delivery of drug payloads using hydrogel carriers. 
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Appendix A. Existence and globality of local minima 

In this appendix we prove that global minima exist and that local minima are equivalent to global minima. To do so,

it is helpful to recall that a definition of convexity (for twice continuously differentiable functions) is that ∀ v , w ∈ R 

M and

α ∈ [0 , 1] , 

αH(v ) + (1 − α) H( w ) − H(αv + (1 − α) w ) ≥ 0 . (A.1) 

We now consider the discrete optimisation problem given by (44) –(45) . The feasible set for d is bounded as d ≥ 0 and 

d i = 

∫ ∞ 

0 

d i f i (t) d t ≤
∫ ∞ 

0 

F (t) d t = 

∫ ∞ 

0 

A (t) d t < ∞ . (A.2)

Moreover, the feasible set is non-empty as all constraints are satisfied by, for example, 

d 1 = 

∫ ∞ 

0 

A (t ) d t , d 2 , d 3 , . . . , d M 

= 0 . (A.3) 

Since H( d ) is continuous, the Boundedness Theorem shows that H has a global minimum in this feasible set. 

Using standard convex programming results [34] , we can prove that constrained local and global minima are equivalent. 

To do so, we consider a more general convex programming problem given by 

min { H( d ) : L d ≤ b } , (A.4) 

where L is a matrix and b a vector such that S := { d : L d ≤ b } � = ∅ . Note that the constraint L d ≤ b can account for upper

bounds on each d i . In this constrained optimisation problem, local minima can be defined by first considering the set of

“feasible directions” V ( d 

∗) at a point d 

∗ ∈ S. This is given by 

V ( d 

∗
) = 

{
v : ∃ β > 0 such that d 

∗ + γ v ∈ S ∀ γ ∈ [0 , β] 
}
. (A.5) 

The vectors v ∈ V (d 

∗) are the directions in which one could move a short distance from d 

∗
while remaining in the set S. A

local minimum d 

∗
therefore satisfies 

d 

d α

(
H( d 

∗ + αv ) 
)∣∣∣∣

α=0 

≥ 0 , ∀ v ∈ V ( d 

∗
) . (A.6) 

To prove the necessity of (A.6) , suppose there exists a v ∈ V ( d 

∗) such that 

d 

d α

(
H( d 

∗ + αv ) 
)∣∣∣∣

α=0 

< 0 . (A.7) 

Then, by continuity, (A.7) implies that 

∃ β∗ such that ∀ δ ∈ [0 , β∗] , 
d 

d α

(
H( d 

∗ + αv ) 
)∣∣∣∣

α= δ
< 0 . (A.8) 

Then, for sufficiently small η, 

H( d 

∗ + ηv ) = H( d 

∗
) + 

∫ η

0 

d 

d α

(
H( d 

∗ + αv ) 
)∣∣∣∣

α= δ
d δ < H( d 

∗
) (A.9) 

and 

L ( d 

∗ + ηv ) ≤ b (A.10) 

so d 

∗
is not a global minimum. 

Thus, it remains to show that all points that are not global minima also do not satisfy (A.6) . Suppose ˜ d is a feasible point

that is not a global minimum and that d 

∗
is a global minimum (which was proved to exist at the start of this section). Then,

H( d 

∗
) < H( ̃  d ) . (A.11) 
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The convexity equation, (A.1) , implies that 

αH( d 

∗
) + (1 − α) H( ̃  d ) ≥ H(αd 

∗ + (1 − α) ̃  d ) . (A.12) 

Now, at α = 0 , the left- and right-hand sides are equal and so, for the inequality to hold, 

d 

d α

(
αH( d 

∗
) + (1 − α) H( ̃  d ) 

)
≥ d 

d α

(
H(αd 

∗ + (1 − α) ̃  d ) 
)

at α = 0 . (A.13) 

Thus, by using (A.11) , we obtain 

0 > H( d 

∗
) − H( ̃  d ) ≥ d 

d α

(
H(( ̃  d + α( d 

∗ − ˜ d )) 
)∣∣∣∣

α=0 

. (A.14) 

Furthermore, 

L 
(

˜ d + α( d 

∗ − ˜ d ) 
)

= L 
(
αd 

∗ + (1 − α) ̃  d 

)
≤ b ∀ α ∈ [0 , 1] , (A.15) 

by feasibility of ˜ d and d 

∗
which means that v := d 

∗ − d is a feasible direction (by defining β := 1 ). Together with (A.14) this

shows that ˜ d is not a local minimum as required and so local and global minima are equivalent for this problem. 

Appendix B. Study of grid independence 

The numerical implementation of the discrete optimisation problem (44) –(45) presented in Section 4.5 requires dis- 

cretising the spatial domain into M cells of width �R = 1 /M. The sensitivity of the optimal solution to the number of cells

is assessed by solving the optimisation problem (44) –(45) using various values of M with a fixed set of physical parameters.

We consider three values of M given by M = 10 0 , 20 0, and 40 0. We observe minor variations in the optimal initial con-

centration of drug molecules. Specifically, the amplitudes of the localised drug packets increase as the cell width �R = 1 /M

decreases; see Fig. B.10 (a). However, the locations of the drug packets remain fixed. Despite the variations in the initial

drug concentration, the optimal drug effluxes F (t) are insensitive to the grid, as shown in Fig. B.10 (b). 

When the drug molecules are assumed to have a finite diluteness (see Section 5.3 ), the optimal initial drug concentration

is less sensitive to the computational mesh. For example, when the global drug fraction is set to ε = 0 . 1 , the optimal initial

drug profiles d(R ) computed using M = 10 0 , 20 0, and 40 0 are virtually identical, as shown in Fig. B.11 . In this case, the drug

molecules are typically located in packets that are spread across multiple computational cells. Thus, altering the cell size 

will have minimal impact on the optimum solution provided that the cells remain smaller than the width of the packets in

which drug molecules are contained. 

Decreasing the size of the computational cells leads to increases in the time needed to solve the hydrogel equations, 

compute the partial effluxes, and build and solve the discrete optimisation problem; see Table B.2 . The most computation-

ally expensive step involves constructing the set of partial effluxes. Increasing M increases the number of partial effluxes 

that must be computed as well as the size of the linear systems that must be solved when time stepping the drug-diffusion

equation. We would like to emphasise that we did not attempt to optimise the code associated with this step and thus

significant improvements are expected to be possible. The computational time needed to build and solve the discrete opti- 

misation problem scales with M 

2 , which is expected given that the bulk of the time is spent on constructing the entries in
Fig. B.10. Dependence of the optimal (a) initial drug concentration and (b) drug efflux on the size of the computational cells, �R = 1 /M, when the drug 

molecules are infinitely dilute ( ε → 0 ). The parameter values are χ = 0 . 5 , D = 0 . 1 , G = 7 · 10 −4 , and τ = 12 . 
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Fig. B.11. Dependence of the optimal initial drug concentration on the size of the computational cells, �R = 1 /M, when the drug molecules have a finite 

diluteness ( ε finite). The parameter values are ε = 0 . 1 , χ = 0 . 5 , D = 0 . 1 , G = 7 · 10 −4 , and τ = 12 . 

Table B.2 

Computational times (in seconds) associated with solving the hydrogel equations, computing the set of partial effluxes 

f i , and building and solving the discrete optimisation problem for different cell sizes �R = 1 /M. 

�R Solve hydrogel model Compute { f i } i Optimisation Total 

1 / 100 3.5 31 6.5 41 

1 / 200 5.4 174 22 201 

1 / 400 12 1800 125 1937 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

the matrix S defined by (48) . Thus, if extending the model to multiple spatial dimensions, it may be necessary to reduce the

degrees of freedom in the optimisation problem by using fewer partial effluxes compared to computational cells to ensure 

numerical feasibility. 
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